522
[541
541.
ON THE RECIPROCAL OF A CERTAIN EQUATION OF A CONIC.
[From the Messenger of Mathematics, vol. I. (1872), pp. 120, 121.]
The following formula is useful in various problems relating to conics: the
reciprocal equation of the conic
X (ax + by + cz) (a'x + b'y + c'z) - ¡jl (a"x + b"y + c"z) (a'"x + b"'y + c'"z) — 0
may be written indifferent in either of the forms
{X
v, £
+ P
Ï , V , t
} 2 4- 4X/a
£ > V , Ç
V > Ç
a', b', c'
a", b", c"
a , b , c
a! , b' , c
a, b, c
a'", bc”
a'", V", c'"
a , b , c
and
{*■
f, V, f
% , V > Ç
} 2 + 4X/a
f » V > £
£ > V > K
a', b', c
a", b", c"
a , b , c
a , b' , c'
a, b, c
a'", b'", c'"
a", b", c"
a"', 6"', c"'
In fact, in the reciprocal equation, seeking for the coefficient of f 2 , it is
{X (ibe' + b'c) - n (lV'c+ b’"c")Y - (2Xbb' - 2fxb"b m ) (2Xcc' - 2/xc'V"),
X 2 (be - b'c) 2 + /a 2 (b"c'" - b"'c’J + 2Xya
f 2bb , c"c'"+2b"b'"cc Ï
t -(bc' + b'c)(b"c ,,, + b' ,, c")j >
viz. this is