Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

549] NOTE ON THE MAXIMA OF CERTAIN FACTORIAL FUNCTIONS. 
549 
In every case the maxima decrease from Y x which is the greatest, to Y p or F p+1 
which is the least; in particular, n = 2p +1, then 
- i (* - ^rr) - <* -1) 
/i 2p-l L_ 
V 2 2.2p+l ”‘~2.2p + l 
which is 
2 2 ^ +2 . {'Ip +1) 2 ^ 
(2p+iyp ’ 
{r(p + l)-s-Tj} 2 P(p + *) 
4 (2p + l)^ 47t (2p + l) 2p ’ 
we have 
and so 
Suppose p is large; then, as for large values of x, 
Tx = \J{2tt) af~^e~ x , 
r (p +1) = V(27r) (p + hY e ~ p ~ l 
= V(2tr) pP e ph *( 1+ £)*-*>-* = V(2tt) tf-P, 
(2p + lp = (2\p) 2p . e 2pl ° g ( 1+ ^) = 2^p 2 ^ e, 
v _ 27rp 2p e~ 2p _p 2 e~ 2p ~ 1 9 ( 1 
i «4-1 = . ^ —:— — p~ I :r~ 
p+l 4tt2 2p p 2p e 2 2p ~ l 
Also Fi corresponds approximately to 
2e. 
2J3+1 
F, 
2 2p + 1 2n ’ 
113 2n-l 1 
1 j F (w + i) 
— ™n+1 Ì • 2 * 2 •** ( n Ì) 
1 r (2p+ f) 
Now 
and 
so that 
n n+12 Tl 2(2p+l) 2 i ,+1 VO) ' 
T (2p +1) = V(2tt) (2p + f) e- 2 ?-i = V(2tt) (2p) 2 i> V 2p+l)I ° g ^ + e~ 2p ~$ 
= V(2tt) 2 2p+2 p 2p+2 e~ 2p , 
(2p + l) 2 ^ 41 = (2p) 2p+l e [2p+1) ]og ( 1+ *p) = (2p) 2p+l e ; 
1 VIStt) . 2 2p+ ' 2 . p 2p+2 e~ 2p 
Y> = 
2 2p+2 p 2 P +1 e * 
VO) 
= pV(2) 
g2p+l ’ 
so that, p being large, Y l is far larger than Y p+1 .
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.