489]
AND THE (2, 2) CORRESPONDENCE OF POINTS ON A CONIC.
17
Now starting from the differential equation
dx _ + dy
V{(a, b, c, d, e\x, l) 4 } ~ V{0, k c, d, e\y> l) 4 } ’
the integral equation is known to be
b, c, d, e\x, l) 4 } — b, c, d, e\y, l) 4 }
x-y
where 6 is the constant of integration. Writing, for
Y= (a, b, c, d, e\y, l) 4 , this is
= a (x + y) 2 + 46 (x + y) + 6 6,
shortness, X = (a, b, c, d, e$jx, l) 4 ,
X + Y — 2 *J(XY) = a (x 2 — y 2 ) 2 +4b(x — y) (x 2 — y 2 ) + 6 8 (x — y) 2 ;
or, what is the same thing,
a (¿c 4 + 3/ 4 ) — 2 \/ (XY) = a(x 2 — y 2 ) 2 + 4b (x — y) (x 2 — y 2 ) + 66 (x — y) 2 ,
+ 46 (x 3 + y 3 )
+ 6c (x 2 + 3/ 2 )
+ 4# (» + 3/)
+ 2a,
viz. this gives
V(IF)= aafy 2
+ 26 (¿r 2 ?/ + ¿t'3/ 2 )
+ 3c (x' 2 + 3/ 2 )
+ 3# (# — 3/) 2
+ 2d (x + y)
+ e,
and, rationalising, the integral equation becomes
— 6adx 2 y 2
— 4 adxy(x + y)
— ae(x + y) 2
+ 4 b 2 x 2 y 2
+ 12bcxy (x + y) — 12bdxy (x + 3/)
— 8bdxy
— Ybe (x + y)
+ 9c 2 (x + y) 2 — 18c# (x 2 + y 2 )
— 12c# (x + y)
+ 9 6 2 (x — y) 2 — 12dd (x + y)— 6ed + 4# 2 = 0;
C. VIII.
3