Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

18 
PORISM OF THE IN - AND-CIRCUMSCRIBED POLYGON, 
[489 
or, as it may be written, 
x 2 y 2 (46 2 — 6a0) 
4- (x 2 y + xy 2 ) (— 4ad + 12be — 1260) 
+ (x 2 + y 2 ) (— ae + 9c 2 — 18c# + 9# 2 ) 
+ xy (— 2ae — 86# 4- 18c 2 — 18# 2 ) 
4- (x 4- y) (— 46e 4- 12c# - 12dd) 
4- 4# 2 — 6c# = 0. 
Comparing this with the original integral equation V= 0, and the form of differential 
equation deduced therefrom, we ought to have identically 
[(46 2 - 6a#) x 2 4- (- 2ad 4- 66c - 66#) x + (- ae + 9c 2 - 18c# 4- 9# 2 )] 
x [(— ae 4- 9c 2 — 18c# 4- 9# 2 ) x 2 4- (— 26c 4- 6c# — 6##) x + (4# 2 — 6e#)] 
— [(— 2ad 4- 66c — 66#) x 2 4- (— ae — 46cZ 4- 9c 2 — 9# 2 ) x 4- (— 26c 4- 6c# — 6##)] 2 
= multiple of X, 
= {(— 4a# 2 — 46 2 e 4- 246c#) 4- (6ae — 246# — 54c 2 ) # 4- 108c# 2 — 54# 3 } (a, 6, c, #, e\x, l) 4 , 
by comparing the coefficients of x 1 . 
I obtain this otherwise : 
Write 
V=aU+6fiH, 
then, forming the Hessian of V, we have 
HV = (a 2 - SI/3 2 ) H 4- (/a/3 4- 9 J/3 2 ) U, 
= (a *~ 6 3J/3 ’' ) ( V - a V) + (Ia/3 + 9 J/3 1 ) U, 
= V + h ( ~ 0? + + 54W U ’ 
that is 
djVd/V-(dd,Vf - (MJV+ ZcydJ„r+ y’djV) = ^ (- or> + №/3 ! + 54,J0>) U, 
or writing 
this is 
K = - 
2 (a 2 - SI/3 2 ) 
P 
24 
(d x 2 V + Ky 2 ) (d y 2 V + Kx 2 ) - (d x d y V — Kxy) 2 = j (- a 3 4- 9/a/3 2 4- 54J/3 2 ) 67, 
so that the components are 
#* 2 F 4- Ky 2 , d x d y V — Kxy, d y 2 V 4- Kx 2 , 
V — ocU + 6 (311 = 
a (a, 6, c, #, c$æ, l) 4 4-6/3 (ac — 6 2 , 2a# — 26c, ac 4-26# — 3c 2 , 26c —2c#, cc — # 2? $æ, l) 4 ,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.