Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

489J AND THE (2, 2) CORRESPONDENCE OF POINTS ON A CONIC. 19 
viz. the components are 
(aa + 6/3 (ac — b 2 ), 
(ab + 3/3 (ad — be), 
(olc + /3 (ae + 2bd — 3c 2 ) + ^K, 
where as before 
I assume 
ab + 3/3 (ad — be), ac + /3 (ae 4- 260 — 3c 2 ) + ^ K\x, l) 2 , 
ac + /3 (ae + 260 — 3c 2 ) + -fa K, ad 4- 3/8 (be — cd)\x, l) 2 , 
ad + 3/3 (be— cd), ae 4- 6/3 (ce — d 2 ) \x, l) 2 , 
2 (a 2 - 3//3 2 ) 
/3 
/3 = — f, a = 4c -66», iT=3{(4c- 60) 2 -f/}. 
aa + 6/3 (ac — b 2 ) = a (4c — 60) — 4 (ac — 6 2 ) = 46 2 — 6a0, 
a6 + S/3 (ad —bc) = b (4c — 66) — 2 (ad — be) = — 2a0 4- 6bc — 6bd, 
ad 4- S/3 (be - cd) = d (4c — 60) —2 (be — cd) = — 2be 4- 6cd — 6dd, 
ae 4- 6/3 (ce — d 2 ) = e (4c — 60) — 4 (ce — d 2 )= 4d 2 — 6e0, 
ac + /3 (ae + 260 — 3c 2 ) — = c (4c — 60) — § (ae + 260 — 3c 2 ) — ^ {(4c — 60) 2 — f/} 
= — -|ae — 260! 4- f c 2 — §0 2 , 
ac 4- /3 (ae + 260 — 3c 2 ) +y%K 
= c (4c — 60) — § (ae + 260 — 3c 2 ) + \ {(4c — 60) 2 — f 7} 
= — ae 4- 9c 2 — 18c0 + 90 2 , 
agreeing with the former result. 
I return to the general form 
y 2 (a , b , c $>, l) 2 
+ 2y (a', 6', d \x, l) 2 
+ (a", b", c"J_x, 1) 2 = 0, 
giving 
dx 
V[(a, 6, c\x, l) 3 (a // , b", c"\x, l) 2 —{(a', b', c'\æ, l) 2 } 2 ] 
~~ V[(a, a', a ,r $y, l) 2 (c, 0, c"$y, l) 2 -{(6, V, b"^y, l) 2 } 2 ] ’ 
Operate a linear transformation on the x, say
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.