Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

20 
PORISM OF THE IN-AND-CIRCUMSCRIBED POLYGON, 
the new coefficients are 
(a , b , c v)\ (a , b , c v\p, p), (a , b , c ^p, p) 2 , 
(a', b', c'$>, z/) 2 , (a', 6', c'][A, v^p, p), (a', b', c'l[p, p) 2 , 
(a", b", c"#\, v) 2 , (a", b", c"%\ v^p, p), (a", b", c"\p, p) 2 : 
assume now 
ci'X + (b' — 9) v — ap — bp = 0, 
(b' + 9) \ + c'v — bp — cp = 0, 
a"\ + b"v- a'p-(b' + 9)p = 0, 
b"\ + c"v — (b' — 6) p— cp = 0, 
then it is easy to show that 
(a, b, c v][p, p) = (a', b', c' v) 2 , 
(a', b’, c'^p, p) 2 = (a", b", c''-$X, v\p, p), 
(a, b, c\p, p) 2 = (a", b", c"J\, v) 2 
[=(a', b', c'$>, v\p, p) + 9 (\p - pv)\ 
and the equations give 
a , b' — 9, a , b =0, 
b' + 9, c' , b , c 
a" , b" , a , b' + 9 
b" , c" , V - 9, c' 
that is 
(a'c' - b' 2 + 9 2 ) 2 + (a'c" - b" 2 ) (ac - b 2 ) 
— (a'b" — a"b' + a"9) (be' — b'c + c9) 
+ (a'c" - b"b' + b"9) (bb' - a'c + b9) 
+ (b'b" - a"c' + b"9) (ac' - b'b + b9) 
- (b'c" - b"c + c"9) (ab' - a'b + a9) = 0, 
which is 
(a'c' - b' 2 ) 2 + (a"c" - b" 2 ) (ac - b 2 ) - 29 
+ a' 2 (— cc") 
+ b' 2 (- ac" - 2bb" - a"c) 
+ c' 2 (— aa") 
+ 2b'd (ab" + a"b) + 9 2 (2 (a'd - b' 2 ) - ac" + 2bb" - 
+ 2cV (- bb") 
+ 2 a'b' (be" + b"c) 
+ 9 4 = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.