489]
AND THE (2, 2) CORRESPONDENCE OF POINTS ON A CONIC.
21
If the original matrix be symmetrical =
a, h, g
h, b, f
g, f, c
, this is
that is
(fh - by + (ag - h 2 ) (eg -f 2 )
+ b 2 {-eg)
+ b 2 (— ac — g 2 — 2fh)
+f 2 (-ag)
+ 2 bf(af+gh)
+ W l (~f h )
+ 2 bh (fg + eh)
- 2d
a,
h,
K g
f
9, f> o
+ Ö' 2 [2 (fh - b 2 ) - ac - g 2 + 2hf]
+ 6 4 = 0,
(b — g) {(6 2 — ac) (b+g) + 2 (a/ 2 + eh 2 — 2bfh)}
-26 (abc - af 2 - bg 2 - eh 2 + 2fgh) + 6 2 (4fh - 2b 2 -ae- g 2 ) + 6+ = 0,
satisfied by
0 + b - g = 0,
viz. the equation in 6 is
(6 + b—g) {6 s — (b — g)6 2 + (4fh -ac- 2 bg - 6 2 ) 6 + (b 2 - ac) (b + g)+2 (af 2 + eh 2 - 2 bfh)\ = 0.