578] A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 167
whence A = 0, A' — 6 ; or we have the equations
giving as before
^ M Sm~ ® u3 ’ ^ 8jjr-6 u ,
(2v 3 + 3v 2 u — u) ^ = 3 (vhi 2 + 2itfv + 1) u,
1 2
reducible by means of the modular equation to — = I + —.
70. n = 5. Corresponding to /=
0, 1, 2, 3, 4, 5, we have /i = 0.
we find
4= J '
V*
S lvin g = ^4
5s
fell«
ii
o
5s
fe'l =2
^1 W
11
©
v 2
if
„ Sy -4V,
if
But for u = 1 the corresponding values
of v, Jy are
« = 1, -
1, -1, -1, -1, -1,
1 -
if -0 ’
l, l, i, l, i;
whence A = A' — 10, A" + B" — 0, or say the value of is — A u( 1 u s ).
The value of A" is found very easily by the ^-formulae, viz. neglecting higher
powers of q, we have
= V2, ^2, i = 5 ; V2, ¿ g = 11
hence
S » = » +S 'fr =52 i (' / 2)« = 4'' 3 iV2;
that is, = 20, and the equations are
M~* W} ~if~ v ’ ~if
si. = 10, S L = 0, 4=1«. 4=°' 4= 10 “‘
Fv 'M =
20« (1 - it 8 )
- lOli 4 (&><> - v )
- 10« 2 (%»! - + «*^0 ” «*)
- 10 (SvoVMVi - vSv<mv a v, + v*Sv 0 ViV 2 - v 3 Sv 0 v 1 + v 4 Sv 0 - v 5 ),
whence