[580
580]
PARTIALLY SYMMETRICAL DETERMINANT.
189
terms
0),
0, we
Developing as far as A, the numerical process is
1
1
1
1
1
1
1
2
8
48
384
5840
46080
1
1
4
1
3?
1
384
1
*
1
8
!
ao|
1
384
5540
1
46 080
1
1
1
1
1
4
5
3?
T52
1535
1
55
1
64
1
2o<>
1
384
1
*
3
7
27
331
8
45
1280
4<j080
1
1
3
5
35
6 3
231
2
5
16
125
556
1024
1
*
3
7
2 5
2 7
3 3 1
8
48
384
1280
46080
*
1
4
3
T5
7
55
25
768
27
2 56 0
3
_s_
16
9
7
2ft
8
64
128
1024
.5
T5
5
35
ITS
fis
3ft
3ft
10ft
128
2 55
1024
6 3
63
256
ftT5
231
To5'i
1
1
1
ft
5
17
2 4
73
150
07
185
1
1
2
6
24
120
720
1
1
2
5
17
73
388,
agreeing with the former values.
The expression of cp (m, 0) once found, it is easy thence to obtain
e $x+l&
6 (m, 1) = 1.2 ... .m coefft. x m in -7
(1 — xy
2gJ*+i**
</> (m, 2) = 1.2 .... m coefft. x m in - 6
(!-«)*
2 3e ix+ix *
6 (m, 3) = 1.2 .... m coefft. x m in — =-
r V ' (1 - xf
and so on, the law being obvious.
[Addition, p. 335.] The generating function
qqII 05#+T# 2
«, ^i + u,«+ 1 2