Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 9)

20 
ON ROOTS OF FLUCTUATING FUNCTIONS. 
[560 
561] 
we have as follows: 
a" 1 = 2 2 . n + 1, 
b~ l = 2 5 . n + 1 . n 4- 2, 
c -1 = 2 7 . 3 . n + 1 ... n 4- 3, 
d~ x = 2 n . 3 . n + 1 ... n + 4, 
e~ l = 2 13 .3.5 . ?i + 1 ... ft + 5, 
/ _1 = 2 1(i . 3 2 .5 . n + 1 ... /1 + 6, 
g~' = 2 18 .3 2 .5.7 . n + 1 ... n + 7, 
// _1 = 2 23 .3 2 .5.7 . ?/ + 1 ...?/ + 8, 
a! -1 = 2 4 . (?i + l) 2 . n + 2, 
b{~ 1 = 2 9 . (n + 1. n + 2) 2 . n + 3 .+ 4, 
Cj -1 = 2 13 .3 . (n + 1 ... n + 3) 2 . n + 4 ... n + 6, 
d~ l = 2 19 .3 . (n + 1 ... n + 4) 2 . n + 5 ... n + 8, 
5n + 11 
a * ~ 2 8 . (n + l) 4 {n + 2) 2 n + 3 . n + 4 ’ 
^ 25 v? + 231?i + 542 
2 2 17 . (n + 1 . n + 2) 4 (n + 3. n + 4) 2 n + 5 ... n + 8 ’ 
_ 429?/ 5 + 7640n 4 + 53752n 3 + 185430n 2 + 311387?/ + 202738 
aj 2 16 (n + l) 8 (n + 2) 4 (n + 3. n + 4) 2 n + 5 . n + 6 . n + 7 . n + 8 
If n = 0, 
^ 16 101369 
Vp-i«. = a * = 227.33.5 7 =Pi > suppose ; 
whence 
p x = 2*404825. 
[The quantities p x , p. 2 ,\.. are the roots of the function J n (x) in increasing order 
of magnitude, so that, as these roots are all real, it folloAvs that for J 0 (x), 
a = %>r 2 , «i = Sj?r 4 , a, = 2pr a , a 3 = Ipr 16 , •••] 
ON T] 
[From the 1 
There 
Journ. de V 
a well-know 
seems itself 
two-curve tl 
sections of 1 
the Jacobian 
is positive ( 
roots: and 
circuit, the < 
In the 
and the coe 
imaginary c< 
where f cf) 
and the que 
In eacl 
considering 
changes fro 
the point ( 
place on a
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.