20
ON ROOTS OF FLUCTUATING FUNCTIONS.
[560
561]
we have as follows:
a" 1 = 2 2 . n + 1,
b~ l = 2 5 . n + 1 . n 4- 2,
c -1 = 2 7 . 3 . n + 1 ... n 4- 3,
d~ x = 2 n . 3 . n + 1 ... n + 4,
e~ l = 2 13 .3.5 . ?i + 1 ... ft + 5,
/ _1 = 2 1(i . 3 2 .5 . n + 1 ... /1 + 6,
g~' = 2 18 .3 2 .5.7 . n + 1 ... n + 7,
// _1 = 2 23 .3 2 .5.7 . ?/ + 1 ...?/ + 8,
a! -1 = 2 4 . (?i + l) 2 . n + 2,
b{~ 1 = 2 9 . (n + 1. n + 2) 2 . n + 3 .+ 4,
Cj -1 = 2 13 .3 . (n + 1 ... n + 3) 2 . n + 4 ... n + 6,
d~ l = 2 19 .3 . (n + 1 ... n + 4) 2 . n + 5 ... n + 8,
5n + 11
a * ~ 2 8 . (n + l) 4 {n + 2) 2 n + 3 . n + 4 ’
^ 25 v? + 231?i + 542
2 2 17 . (n + 1 . n + 2) 4 (n + 3. n + 4) 2 n + 5 ... n + 8 ’
_ 429?/ 5 + 7640n 4 + 53752n 3 + 185430n 2 + 311387?/ + 202738
aj 2 16 (n + l) 8 (n + 2) 4 (n + 3. n + 4) 2 n + 5 . n + 6 . n + 7 . n + 8
If n = 0,
^ 16 101369
Vp-i«. = a * = 227.33.5 7 =Pi > suppose ;
whence
p x = 2*404825.
[The quantities p x , p. 2 ,\.. are the roots of the function J n (x) in increasing order
of magnitude, so that, as these roots are all real, it folloAvs that for J 0 (x),
a = %>r 2 , «i = Sj?r 4 , a, = 2pr a , a 3 = Ipr 16 , •••]
ON T]
[From the 1
There
Journ. de V
a well-know
seems itself
two-curve tl
sections of 1
the Jacobian
is positive (
roots: and
circuit, the <
In the
and the coe
imaginary c<
where f cf)
and the que
In eacl
considering
changes fro
the point (
place on a