Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 9)

607] 
A MEMOIR ON PREPOTENTIALS. 
415 
or, if for a,.., c, e we restore the values A — L,.., G — L, E — L, then 
a? + ...Jr- + Eo,*-L)» = j> • UK* + 4 - L)... (t + 0-1) (t + B- L))-K 
= —J dt {(t + A)... (t + G)(t + E) (t + ; 
viz. we thus have 
/ 
dS 
{(*$#,.., 0, w, l) 2 }^ 
= (" dt {(< + A ) ... (t + 0) (t + E) (t + 
where (t + A) ... (t + G) (t + E) (t + L) is in fact a given rational and integral function 
of t ; viz. it is 
= — Disct. {(* \X,.., Z, W, T) 2 + t(X*+...+Z 2 +W 2 -T% 
147. Consider, in particular, the integral 
i dS 
J {(a — foe) 2 + ... + (c — hz) 2 + (e — Jew) 2 + ¿ 2 }* s ’ 
here 
(*$X,.., W, T) 2 +t{X 2 + ...+Z 2 +W 2 -T 2 ) 
= (aT -fX) 2 + ...+(cT-JiZ) 2 +{eT-le W) 2 + l 2 T 2 + t{X 2 + ... + Z 2 + W 2 — T 2 ) 
= (f 2 + t) X 2 + ...+(h 2 + t) Z 2 + (Jc 2 +1) W 2 + (a 2 + ... + c 2 + e 2 + l 2 -t) T 2 
- 2afXT - ... - 2chZT - 2ek WT; 
viz. the discriminant taken negatively is 
t+f 2 ,... , -af 
...,t + h 2 , — ch 
— af,... — ch, — (a 2 + ... + c 2 + e 2 + P) + t 
which is 
( fi 2 -f2 X2 fa 2 
t — a 2 - ... — c 2 — e 2 — l 2 + + • • • + 
= {«(* +/>).... (t + (t+*)} (i - ^ -... - ^ -?) 
= (t + ^4)... (t + G) (t + E) (t + L); 
e 2 k 2 \ 
+ t + k 2 ) ) 
and consequently — J.,.., — (7, — E, —L are the roots of the equation 
iJL-t = o. 
t+f 2 t + h 2 t + Jc 2 t 
148. The roots are all real; moreover there is one and only one positive root. 
Hence, taking —L to be the positive root, we have A,.., G, E, —L all positive, and 
therefore d fortiori A — L,.., G — L, E — L all positive: which agrees with a foregoing
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.