74
ON THE CYCLIDE.
[569
magnitude than — 7, it is a hyperbola having the axis of x for its transverse axis;
and finally z — 7, it is the two-fold line x = 0. It is easy to see the forms of the
cubic curves which are the sections by any planes x = const, or y — const.
Fig. 3.
The before-mentioned circles are curves of curvature of the surface; to verify this
a posteriori, write
U = z (z - /3) (z — 7) + (z — 7) y 2 + (z — /3) x 2 = 0
for the equation of the surface; and put for shortness P = 3z 2 —2z (/3 + 7)+ /3y, P + a? + y 1 — L,
so that d z U = P + a? + y 2 , =L. The differential equation for the curves of curvature is
2x{z-$) , 2y (z — 7) ,
xdz + (z — /3) dx, ydz + (z — 7) dy,
dx , dy ,
P + x 2 + y 2
\P'dz + xdx + ydy
dz
or, say this is
H = dx 2 .2xy (z — 7) — dy 2 .2xy (z — /3) + dz 2 .2xy (7 — /3)
+ dzdy . x [— 2 (z — /3) (2z — /3) + L]
+ dxdz.y[ 2 (z — 7) (2z — 7) — L]
+ dxdy. [(7 — /3) P + (2 z — ¡3 — 7) (y 2 — a?)] = 0.
But in virtue of the equation U = 0, we have identically
{2 (z- /3) xdx + 2 (z -y)y dy + Ldz] x {~ JZTpydx + xdy+ ^ (z-y)
+ il
= (7-/3) js - x -y( z -7) dzdx -x(z-/3)dzdy+ (z-/3)(z-7) dxdy}.