Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

80 
ON CERTAIN OCTIC SURFACES. 
[654 
If in this equation we write 
aY = a, df 2 =/, 
6Y=6, b'g' 2 =g, 
c' 2 h' = c, 6b! 2 = h ; 
and therefore 
bc'-b'c 
ca' — c'a 
bd'-b'd= J-:, 
bd' — b'd = 
and consequently 
ab' — a'b 
(&/)* + (bgf + (ch)* = 0 ; 
then the equation becomes 
d 2 y 4 z! + b 2 z 4 ofi + c 2 x 4 y 4 
+ f 2 x 4 w 4 + g 2 y 4 w 4 + h 2 zhv 4 
4- 2bcx 4 y 2 z‘ 2 — 2cfx 4 y 2 w 2 + 2 bfa6z 2 w 2 
+ 2cay 4 z 2 x 2 — 2agy 4 z 2 w 2 + 2cgy i xhv 2 
+ 2abz 4 x 2 y 2 — 2bhz 4 xhu 2 1- 2ahz 4 y 2 w 2 
— 2ghw i y 2 z 2 — 2hfyj i z 2 x 2 — 2fgw 4 xhf 
+ 2 {(bg) H — (ch)*} {(chy — (a/)»} {(a/)- 1 — (ch)*} x 2 y 2 z 2 w 2 = 0. 
This same equation, without the relation 
{off + (bgf +(chf = 0, 
and with an arbitrary coefficient for x 2 y 2 z 2 w 2 ; or say, the equation 
a?y 4 z 4 + b 2 z 4 x 4 + dxty 4 
+ f 2 o6w 4 + g 2 y*w* + h 2 z*w* 
+ 2bcx i y 2 z 2 — 2cfx 4 y 2 w 2 + 2bfx 4 z 2 w 2 
+ 2 cay i z 2 x 2 — 2agy 4 z 2 w 2 + 2cgy 4 xhu 2 
+ 2abz 4 x 2 y 2 — 2bhz i x 2 w 2 + 2ahz 4 y 2 vu 2 
— 2ghw 4 y 2 z 2 — 2hfw 4 z 2 x 2 — 2fgw i x 2 y 2 
+ 2kx 2 y 2 z 2 w 2 = 0, 
where a, b, c, f g, h, k are arbitrary coefficients, is the general equation of an octic 
surface having the four nodal curves 
x = 0, . hz 2 w 2 — giu 2 y 2 + ay 2 z 2 — 0, 
y — 0, — hz 2 w 2 . + fw 2 x 2 + bz 2 x 2 = 0, 
z = 0, gy 2 w 2 — fw 2 x 2 . + cx?y 2 — 0, 
w = 0, — ay 2 z 2 — bz 2 x 2 — copy 2 . = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.