Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

[654 
654] 
ON CERTAIN OCTIC SURFACES. 
87 
we find 
TT / A* . 2 , t>\ A 2 (A - 1 y . , 
n + gy*) = Ay\ 
Il (kef) — l) 2 = "'^-¿2^ (Aæ 2 — ay 2 + hw 2 ) ~ , 
a? 
and thence 
n (fx 2 ef 2 + gy-) (kef) - 1 ) 2 = - ^ A (A# 2 - ay 2 + Aw 2 ) 2 ^, 
and consequently 
© = h {k — l) 2 A (bx 2 — ay 2 + Aw 2 ) 2 . S \ . , — . 
y ' CW + ^Xty-i) 1 
Hence, writing 
4> 2 
4 5 
+ — i + 
a 
D 
(fiW + 9tf) № - 1) ! (H - 1)’ T k-f, - 1 ' r a* V(/) + ¿2/ VO) + ¿0 V(7) ty VO) ’ 
we may calculate separately the terms 
and 
The first of these is 
V i A ^ B 
)(kef> — l) 2 A kef) — lj ’ 
( 
G 
+ • 
D 
{X(f> V(/) + iy f(g) x<f) V(/) - iy f(g)j ' 
1 
(A — l) 2 (fx 2 + k?gy) 2 (bx 2 — ay 1 + Aw 2 ) 2 y> ’ 
if for shortness 
y, w] 6 = (fa? + A% 2 ) [4 {(2 - k) bx 2 - ay 2 + A (1 - A) w 2 } 2 
— 2 (A« 2 — ow/ 2 + Aw 2 ) {(6 — 6k + A 2 ) A« 2 — ay 2 + A (1 — A) 2 w 2 }] 
the second is 
if for shortness 
+ 4A 2 (A — 1) gy 2 (bx 2 — ay 2 + Aw 2 ) {(2 — A) A« 2 — ay 2 + A (1 — A) w 2 } 
2 
(A — l) 2 (yir 2 + k' 2 gy 2 ) 2 A 
(«» y, w )\ 
(x, y, w) 6 = {(fx 2 - k 2 gy 2 ) (cfx 2 - egy 2 —fgvfi) - ^ckfgxf 2 } 
x {fgbk 2 x 2 + [2cA (A — l) 2 + a/] gry 2 + fgh (A — l) 2 w 2 } 
+ 2 {A 2 A$r — cA (A — l) 2 } fgx % y 2 {c (A + 1) (/¿c 2 — A$q/ 2 ) — kfgw 2 } ; 
and hence 
which must be 
In partial 
0 = (fa? + Bgy 2 ) 2 & y> + 2 ( bx * ~ ay2 + ^ w2 ) 2 (®» V’ W ) 6 1> 
a rational and integral function of (x, y, w). 
verification of this, observe that, because U contains the terms 
2b 2 cf(ch — of) xPz 2 + 2Glxhfz 2 w 2 ,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.