[654
x values ;
654]
ON CERTAIN OCTIC SURFACES.
91
ij Pi> Ci-
it is the
ve
/3 2 )} A> 2
or, denoting for a moment the coefficient of A 2 /* 2 by K, and writing also <yv- = X — a\~ — /3/a 2 ,
v = P — X — /i, this is
= xa> 2
-4a (/3 + 7) 2 A/a 2
-2 (/3 + y) 2 /a 2 (X-aA 2 -/3/a 2 )
+ 4/3 (7 + a)- A 2 /a (P — A — /a)
+ 2a (7 + a) 2 A 4 ,
= — 2 (/3 + y) 2 /a 2 X + 4/3 (7 + a) 2 A 2 /aP
+ 2a (7 + a) 2 A 4
— 4/3 (7 + a) 2 A'/a
+ {— 4/3 (7 + a) 2 + K + 2a (/3 + 7) 2 } A 2 /* 2
— 4a (/3 4- 7) 2 A/a 3
+ 2/3 (/3 + y) 2 /a 4 ,
and here the coefficient of A 2 /a 2 is found to be
= 2 {a/3 (a + /3) + 7 (a — /3) 2 - 37 2 (a 4 /0)}.
Hence, the terms without X or P are = 2 V, where
V = a (7 + a) 2 A 4
- 2/3 (7 + a) 2 A>
+ {a/3 (a + /3) + 7 (a - /3) 2 - 37 2 (a + /9)} A> 2
— 2a (/3 + 7) 2 fyi 3
+ Æ (Æ + y)V*>
and this is identically
where observing that
(a 4- 7) A 2 ^
= + 27A /Jb
+ (/3 + 7) /¿ 2
h x
a (7 + a) A 2
— 2 (/37 + 7a + a/3) A/a
+ /3 (/3 + 7) /¿ 2 ,
aA 2 + /3/a 2 + 7 (P — A — /a) 2 = X,
we have the first factor
(a + 7) A 2 + (/3 + 7) /a 2 + 27A/a = X — 7P 2 4- 27P (A + /a),
and consequently
A 2 /a 2 (A — P) = — 2 (/3 4- y) 2 /x 2 X + 4/3 (7 + a) 2 A 2 /aP
+ 2 {X — 7P 2 + 2yP (A + /a)} {a (7 + a) A 2 — 2 (/3y + 7a + a/3) A/a + /3 (/3 4- 7) /a 2 };
viz. in virtue of P = 0, X = 0, we have A = P. And thus
A = B = C = - A 1 = - P, = - C,:
so that the only values of il are, say, A and — A.
12—2