Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

92 
ON CERTAIN OCTIC SURFACES. 
[654 
Reverting to the original equations 
{fO 2 + g) (k6y — x) 2 + h(k — 1 ) 2 0 2 z 2 = 0, 
(ibk 2 6 2 — a) ( 6y — x) 2 + h (k — l) 2 (fiw 2 = 0, 
say these are 
(a, b , c, d, e \6, l) 4 = 0, 
(a', b', c', d', ¿\d, 1) 4 = 0, 
then the coefficients in the two equations have the values 
fk 2 y 2 , bk 2 y 2 , 
— 2 kfxy, — 2bk 2 xy, 
fx 2 + gky 2 + h(k — l) 2 z 2 , bk 2 af — ay 2 + h(k — l) 2 w 2 , 
— 2gkxy, 2 axy, 
gx 2 , — ax 2 , 
where observe that only c contains z 2 , and only c' contains w 2 . The result of the 
elimination is 
a, 
b, 
c, 
d, e 
a, 
b, 
c, 
d, 
e, 
a, 
b, 
c, 
d, 
e, 
a, b, 
c, 
d, 
e, 
a', 
b', 
c', 
d', e' 
a\ 
v, 
c', 
d', 
e', 
a', 
v, 
c\ 
d', 
e', 
a', V, 
c', 
d', 
e', 
viz. here the only terms which contain 
z 8 and 
w 8 are 
c 2 a' 2 e' 2 + c' 2 a 2 e 2 , 
and hence the terms in z 8 and w 8 are 
A 4 (k — l) 8 z 8 . a 2 b 2 k^y i + A 4 (k — l) 8 w 8 .f 2 g 2 k i x A y i , 
viz. these are 
= h 2 k A (k — l) 8 ctfy* (a 2 b 2 h 2 z 8 + f 2 g 2 h 2 w 8 ), 
or assuming that the determinant contains as a factor the function b 2 c 2 f 2 a?+... + 2£lx 2 y 2 z 2 w 2 , 
with a properly determined value of il, we see that the other factor is =h 2 k 4 (k — l) 8 # 4 y 4 , 
which agrees with a preceding result.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.