[657
M =1: we have
658]
143
a x 2 '
■mation
; then, writing
of #* +1 = 0, 658>
or, if a) be an
= 0 ; so that a
ON SOME FORMULAE IN ELLIPTIC INTEGRALS.
v = 0 3 a, (1 + 2a>),
(o 4 6 4 = — (o; and
[From the Mathematische Annalen, t. XII. (1877), pp. 369—374.]
I reproduce in a modified form an investigation contained in the memoir,
Zolotareff, “ Sur la methode d’integration de M. Tchebychef,” Mathematische Annalen,
t. v. (1872), pp. 560—580.
Starting from the quartic
(a, h, c, d, e)(x, l) 4 , = a.x — a.x — ß.x— y.x — 8,
we derive from it the quartic
ed. We have
= V — 3, which
(Uj, hi, Cj, di, Ci) (xi, l) 4 oq . Xi «i. x 1 ßi. Xi — yj. Xi — 8i,
where, writing for shortness
\ = — & + /3 + <y — 8,
i relation cor-
3 integral, and
he modulus, a
a — ß + y - 8,
v = a + ß — y — 8,
the roots of the new quartic are
*“'+£■
^ = e,
6 being arbitrary: the differences of the roots a lf ß 1} y 1} 8 l are, it will be observed,
functions of the differences of the roots a, ß, y, 8.