[658
658] ON SOME FORMULAE IN ELLIPTIC INTEGRALS. 147
8
to transform
by that letter :
k of ambiguity).
in virtue of the foregoing values
7i-«i = ^(.£ — 8)(ry- a) and 7l - =
Moreover
/,2__a-fi-y-8 _ «i-
ry ~ a. ¡3 — 8 7i-«i- $i— 8 X '
Hence the like formulae with the same value of k 2 , and with 2a in place of a, will
be applicable to the like differential expression in x x : viz. assuming
a x sn 2 u x — 8 X sn 2 2a
sn 2 u x — sn 2 2a
we have
dx x
- 2
\/ x x — a x . x x — (3 X . x x — y x . x x — Sj V 7l — a x . /3 X — 8 X
du x .
We have thus the integral of the differential equation
dx x
\/x x — a x . x x — fi x . x x — 7l . x x — 8 X
dx
x — a. x — ¡3.x — <y .x — 8
(the two quartic functions being of course connected as before); viz. assuming x, x x
functions of u, respectively as above and recollecting that y 2 — a x . ¡3 X — 8 X — y — a. (3 — S,
we have du x = du; and therefore u x = u + f ( f an arbitrary constant); the required
integral is thus given by the equations
sn 2 u _ x — 8 _
sn 2 a x — a ’
sn 2 (u+f)_x x — 8 X '
sn 2 2 a x x — a 1 i
( f the constant of integration).
Using the formula
sn (w+/) =
sn 2 u — sn 2 /
we obtain
x x 8 X
sn 2 2 a :
sn u cn /dn /— sn /cn u dn u ’
{(x — 8) sn 2 a — (x — a.) sn 2 f } 2
x x — a x {V# — a . x — 8 sn a cn/dn f—*Jx — ¡3.x —<ysn /cnadna} 2 ’
which is the general integral.
We obtain a particular integral of a very simple form by assuming /= a, viz.
this is
^■sn=2a- Snaa
(a - 8f
X-I — ct
this is
cn 2 a dn 2 a (V# _ a. x - 8 - \/x - ¡3. x - 7 } 2 ’
x x — Si 7i — «1 7 — ct. /3 — 8
x x — ct x 7i — x — % .x— 8 — \/x — (3. x — ry} 2 ’
19—2