160
ON THE DOUBLE ©-FUNCTIONS IN CONNEXION
[662
[5]
(ft
Y>
ft
«)(Z,
ft
ft
IF) =
= 0,
[6]
(y,
-8,
a,
-£)(Z,
ft
ft
W) =
= 0,
[7]
(y>
8,
a,
£)(Z,
ft
ft
W) =
= 0,
[8]
(ft
- Y.
ft
- a)(X,
ft
ft
W) =
= 0,
[9]
(ft
a,
8,
Y>(Z,
ft
ft
W) =
= 0,
[10]
(a,
-ft
Y>
- 8)(X,
ft
ft
W) =
= 0,
[H]
(«>
ft
Y>
8) (Z,
ft
ft
W ) =
= 0,
[12]
(ft
- a,
8,
- y) (Z,
ft
ft
W) =
= 0,
[13]
(8,
Y>
-ft
- a) (X,
ft
ft
W) =
= 0,
[14]
(y»
-8,
- a,
ft)(Z,
ft
ft
W) =
= 0,
[15]
(y,
ft
- a,
-ft)(z,
ft
ft
W) =
= 0,
[16]
(5,
- Y>
-ft
«)(Z,
ft
ft
W) =
= 0.
I repeat in a new order the sets of coefficients which belong to the several
squares, viz. these are
(1) P 2 (a, -ft - 7, 8),
(2) Q 2 (ft a, -8, - 7),
(3) Q 2 (ft -a, -8, 7 ),
(4) P x 2 (a, ft - 7, - 8),
(5) P 2 2 (7, - 8, a, - ft,
(6) ft 2 (8, 7, ft a),
(7) ft 2 (8,-7, ft - a),
(8) P 3 2 (y> ft A
(9) P 2 2 (a, -ft 7, - 8),
(10) Q 3 2 (ft a, 8, 7),
(11) Q 2 (ft -a, 8, -7),
(12) P 3 2 (a, ft 7, ft,
(13) P 2 (7, -8, -a, ft,
(14) ft 2 (8, 7, _ft _ «),
(15) $ 2 (8, -7, -ft a),
(16) Pi 2 (7, 8, -a, -ft.
And I remark that, if we connect these with the multipliers (F, — X, W, — ft), we
obtain, except that there is sometimes a reversal of all the signs, the same linear
functions of (X, F, Z, W) as are written down under the same numbers in square
brackets above: thus (1) gives
(a, -ft -7, ft (ft -X, W, - Z), which is (ft «, -8, -y)(X, F, ft W), = [1];