Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

665] 
A MEMOIR OX THE DOUBLE ^-FUNCTIONS. 
207 
The formula thus becomes 
П 2 
Д-A = aaj 
M + (~!jf — ) (Зет + aj Эм) 2 + ( — 
2 U 1 _U 1 / 
0 s 9 
¡j- ^ (Зет + a du) 3 
- |^ 2 (abcdjejfj + ajbjCjdef) - (Vde) 3 j (du) 3 
— ~ (dvr + aj Эм) 2 — (Зет + a du) 3 
+ |^(abcd iei fi + a 1 b 1 c 1 def) — (Vde) 2 ] (Зет) 2 , 
“ ' ' "''J 
viz. substituting for M its value, the term in (\/de) 3 (du) 3 disappears, and the formula is 
4 
П 
, AA = aa 2 
%' (du) 3 + 233'ЭмЭет + (£' (Зет) 2 + ^ j (Зет + а. Эм.) 2 
+ ~ + a du) 3 - ^ (abcdjejfj + ajbjCjdef) (ЭгО 2 
(Зет + aj du) 3 — a ^ 1 (Зет + а Эг^) 2 
+ (abcd^fi + ajbjCjdef) — (Vde) 3 \ (Зет) 2 : 
say for shortness this is 
4 
П 2 
AA 
Я 77 я 77 1 /— 
= aa, X —(Зет + а, Эм) 2 —^ (Зет + а Эм) 2 + ^ (abcd^h + ajbjCjdef) - (fde) 3 (Зет) 2 . 
Second step of the reduction. 
In the reductions which follow, we make as many terms as may be to contain 
the factor аа 1; so as to simplify as much as possible the portion not containing this 
factor. 
We have Зет + du = (Зет + 0 Эм) + а Эм, and consequently 
(Зет + aj Эм) 2 = (Зет + 9 du) 3 + a P, 
where P = 2 du Зет + (a + 20) (du) 3 : similarly Зет + а Эм = (Зет - 0 du) + ^ Эм, and therefore 
(Зет + a du) 3 = (Зет — 9 du) 3 + a l P 1 , 
where Р г = 2 Эм Зет + (a 2 - 20) (du) 3 : the values may also be written 
P = 2 Эм Зет + (2a : — а) (Зм) 2 , P 1 = ’2 du Зет + (2a — a!) (du)-.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.