Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

232 
ON THE BICIRCULAR QUARTIC. 
[667 
and then, Vii denoting as above a determinate value, positive or negative as the case 
may be, of the radical, and similarly ViF, VfF, Vil 3 denoting determinate values of 
these radicals respectively, each radical having its own sign at pleasure, we further 
write 
(x 2 + y 2 ) R' = 1 — ax — ¡3 y — Vil , 
(a?! 2 + yr) R\ — 1 a x x x /3i2/i Vilj, 
(orj 4- yi) R.: = 1 - a 2 «2 - /3 2 y 2 - Vil 2 , 
+ y 3 -) -B 3 = 1 — a. A x 3 /^ 3 y 3 Vii 3 , 
O1 2 4- y/ 2 ) /¿j = 1 - a, a?! - &y r 4- Vilj, 
(& 2 2 4- y 2 2 ) -B2 = 1 — «2^2 — /3 2 y 2 4- Vil 2 , 
Os 2 + 2/.7) R s =l- a 3 x 3 - /3 3 y 3 + Vil 3 , 
(& 2 4- y 2 ) R = 1 — a x — (3 y 4- VO ; 
and this being so, we must have 
X =a+R'x=a 1 +R 1 x 1 , Y = /3 + R' y =/3 l +R 1 y 1 , R' =£(X 2 + F 2 —Jc ), 12 1 =|(X 2 4- F 2 -k x ), 
X 1 ==a 1 4-i^'#i=a 2 +-R 2 a; 2 , F = /3 X +/¿/y 1=/3,4-y,, Ri=^(Xi+Yi-k^, R 2 =^(Xi+Yi-L), 
X,=a 2 +R 2 'x 2 =a s +R 3 x 3 , Y 2 = ^+R 2 , y 2 =/3 3 +R 3 y s , R 2 '=%(X 2 2 + Y 2 2 -k 2 ), R 3 =^(Xi+ F 2 2 -& 3 ), 
X 3 =a 3 +R 3 'x 3 =a +R x , F 3 = /3 3 4-R 3 'y 3 =/3 +R y , Ri=%(X 3 2 + Y 3 2 -k :i ), R =|-(X 3 2 + Y 3 2 -k); 
and then from the values of X, F, R', R, we have 
a — a, 4- = 0, 
giving 
and similarly 
£ - Pi + R'y- Riyi = 0, 
(0 - 6»,) + R! -R, =0, 
(Æ — a?i) — (a -otiKy — yi) + (^ — $i)(&yi — X \V ) = 6 ; 
(A - &) (a?! - a? s ) - (a, - a 2 ) (y! - y 2 ) 4- (F - 0 2 ) (^y 2 - ^1) = 0, 
(/3 2 - /9 3 ) (a? 2 - a? 8 ) - (a 2 - a 3 ) (y 2 - y s ) + (0 2 - 6 3 ) (x 2 y 3 - æ 3 y 2 ) = 0, 
(& - /3 ) (x s - x ) - (a 3 - a ) (y, - y ) 4- (0 3 - 0 ) 0 3 y - « y 3 ) = 0, 
which are the relations connecting the parameters (#, y), (a^, y x ), {x 2 , y 2 ), (a? 3 , y 3 ) of the 
quadrilateral. 
19. We have thus apparently four equations for the determination of four quantities, 
or the number of quadrilaterals would be finite; but if from the first and second 
equations we eliminate (x x , yi), and if from the third and fourth equations we eliminate 
0 3 , y 3 ), we find in each case the same relation between (x, y), (x 2) yi), viz. this is 
found to be 
ililo = (1 - a x 2 - /3 y 2 ) 2 (1 - a 2 x - /3 2 y) 2 ; 
and we have thus the singly infinite series of quadrilaterals. We have, of course, between 
(x x , y0> ( x 3> Vi) the like relation, 
iliil, = (1 - a x x 3 - Ay 3 ) 2 (l - 0&! ~ /3 3 yi) 2 -
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.