670]
240
670.
[NOTE ON ME MUIR’S SOLUTION OF A “PROBLEM OF
ARRANGEMENT.”]
[From the Proceedings of the Royal Society of Edinburgh, t. ix. (1878), pp. 388—391.]
The investigation may be carried further: writing for shortness u 3 , u 4 , &c., in place
of (3), "'F (4), &c., the equations are
u 3 = 1,
w 4 = 2 u 3 ,
Hence assuming
we have
u 5 = 3 w 4 + 6u 3 + 1,
u 6 = 4 u- 0 + 8 u 4 + 12 u 3 ,
u 7 = ou 3 + 10w 5 + 1om 4 + 18w 3 + 1.
U — U 3 + U A X + U 5 X 2 + uyt? + U 7 X 4 + ...,
w = - - + u 3 (2x-\- 6x 2 + 12a? 3 + 18a? 4 + ...)
1 — x 2
+ w 4 (3# 2 + 8x? + 15a? 4 + 22a? 5 + ...)
+ u 5 (4a? 3 + 10a? 4 + 18x? + 26a? 6 + ...)
+ u 6 (5x 4 + 12a? 5 + 21a? 6 + 30a? 7 +...);
so that, forming the equation
, x 2
u
u A { x 2 + 2x 3 +
+ u 5 (2a? 3 + 4a? 4 +
+ u 6 (3a? 4 + 6x 5 +
3X 4 + 4a? 5 + ...)
6x B + 8a? 6 +...)
9a? 6 + 12a? 7 +...),