Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

670] 
240 
670. 
[NOTE ON ME MUIR’S SOLUTION OF A “PROBLEM OF 
ARRANGEMENT.”] 
[From the Proceedings of the Royal Society of Edinburgh, t. ix. (1878), pp. 388—391.] 
The investigation may be carried further: writing for shortness u 3 , u 4 , &c., in place 
of (3), "'F (4), &c., the equations are 
u 3 = 1, 
w 4 = 2 u 3 , 
Hence assuming 
we have 
u 5 = 3 w 4 + 6u 3 + 1, 
u 6 = 4 u- 0 + 8 u 4 + 12 u 3 , 
u 7 = ou 3 + 10w 5 + 1om 4 + 18w 3 + 1. 
U — U 3 + U A X + U 5 X 2 + uyt? + U 7 X 4 + ..., 
w = - - + u 3 (2x-\- 6x 2 + 12a? 3 + 18a? 4 + ...) 
1 — x 2 
+ w 4 (3# 2 + 8x? + 15a? 4 + 22a? 5 + ...) 
+ u 5 (4a? 3 + 10a? 4 + 18x? + 26a? 6 + ...) 
+ u 6 (5x 4 + 12a? 5 + 21a? 6 + 30a? 7 +...); 
so that, forming the equation 
, x 2 
u 
u A { x 2 + 2x 3 + 
+ u 5 (2a? 3 + 4a? 4 + 
+ u 6 (3a? 4 + 6x 5 + 
3X 4 + 4a? 5 + ...) 
6x B + 8a? 6 +...) 
9a? 6 + 12a? 7 +...),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.