250
NOTE ON MR Muir’s SOLUTION OE A “ PROBLEM OF ARRANGEMENT.” [670
where u' denotes ^, we have
iC 3
n — u
(1—a?) 2 1—sc
1
1 — X‘
+ (u 3 + u 4 x + u 5 x 2 + ...) (2a? + 6a? 2 + 12a? 3 + 18a? 4 + ...)
+ u (2a? + 6a? 2 + 12a? 3 + 18a? 4 +...);
or, what is the same thing,
u — u
, + u
2a?
2a? 4
that is,
(1 — a?) 2 — 1 — a? 2 |(1 — a?) 3 (1 - x) 3 (1+ a?)j ’
2a? 4
a? 2 , 1
u — u =
(1 — a?) 3 ~ (1 — a?) 3 (1 + a?)) (1 - a;) 2 1 - a? 2 *
This equation may be simplified: write
u =
then
and the equation is
1 — a? 2 ^ 2 1+a?
1 - a: 2
a? 4
'4 2
a? 4 a? 2 >
1 — a? 2 ,
4 1 2
+
a; 4 a? (1 + a?) 2 (1 - a;) 2 a? (1 - a?) 2 a? (1 - a?) 2 ) ^ (1+a?) a? 2 1
Q + n
1+a?
Q' =
,.2 ’
that is,
2 2,2
+ «TTi ~v» +
2 1 q+^ l± ^«'= 1
a? 4 + a? 2 a? (1 - a?) 2 a? 2 (1 - a?) 2 a? (1 - a?) 2 (1 - a?) 2 ) ^ (l-a?)a? 2 ^ 1-a? 2 ’
viz. this is
L(l^ + (J^_2 + 2 + 2_ 2 j 1-^
) a; 4 a? 2 a, 13 a? 2 a? j a? 2 1+a?
that is,
I
or
or finally,
giving
and thence
1 — a? 2 n 1 — a?
1 Tx’
(1 ~ ^ Q , 1 ~ Q' = 1 .
a^ a? ^ 1 + a?’
a; 2 ) ^ — (1 + a?) 2 ’
= A* + Dj-*.. * x+1 *
Q = e
(a? + l) 2
cia?,
_ e + + i) f «* + + s)
(a? + l) 2
which is the value of the generating function
u = u 3 + u 4 x + u 5 x 2 + &c.
dx,