684]
293
684.
ON A RELATION BETWEEN CERTAIN PRODUCTS OF
DIFFERENCES.
[From the Quarterly Journal of Pure and Applied Mathematics, vol. xv. (1878),
pp. 174, 175.]
Consider the function
1 abc . de
' abd . ce '
+ bed . ea
+ bee . da
^ + ede . ab
► <
+ eda . eb V
+ clea. be
+ deb . ac
+ eab . cd
+ eac . bd
where
abc = (a — b) (b — c) (c - a),
ab — (a — b) (b — a), = — (a — b) 2 ,
&c. ;
therefore
abc = bca = cab = — bac, &c.;
ab = ba.
It is to be shown that the function vanishes if e = d. Writing e = d, the value is
3 (bed. d,a + dab . cd) — abd . cd
— bed . da
— eda . db
— dac . bd,