300
[686
ON A FUNCTIONAL EQUATION.
and the value is thus
1 1
-*
(RS'-R'S)X
_ R' ' - R’ (\R' + S')(\R+S)'
1 ”f* A/ X “j” A ^
Hence, from the assumed value of (f>x, we obtain
— d) 2 + 4be] (A
G(dC-cD) (\R' + S') (XR + S)
* _ * - £ - „) - v«“ - <*>■ +w ' !l - 1/ '
We have
or since
this is
= (X ad-bc^ (d ° ~ CjD) ^ + ( d - a ) æ ~ 6 1>
RX + S = (A 2 - 1) (cx + d), see post, (2),
R'X + S'=(X -l)(a + d)(Gx + D),
cx 2 + (d — a) x — b
' 1 rp rp
1 ’— tv tAs~t .
cx -f- d
ÿ. - * - £ - «0 - +46c -i^ J - gc >
(a + d) A
But from the value of A,
G (ad — bc)(X 2 —l)(Gx + D)
ad — be
(x — x,).
A 2 — 1 (a + d) \J{(a — d) 2 + 46c} ’
and the equation thus is
, . , N (A AD — BGI , N Ax + B
$x - (fix, -(x- X,) j £ - > ~( x ~ Cx + D ’
as it should be.
(1) For the foregoing values of t},, we require R„ S lt R,', S,', the values
which R, S, R', S' assume on writing therein x, for x. We have
R, = X (cx, + d) + (cx, — a),
S, — (cx, + d) — A (cx, — a):
substituting for x, its value, we find
R, (cx + d) = (a + d) A (cx + d) — (ad — be) (A + 1),
or writing herein
this is
ad 6c _ («+<*)*»■
(X+l) 1 ’
R 1 (cx + d) = ( - a +yy , R i
S,(cæ + d) = pOfs.
A + I
and similarly