Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

A TENTH MEMOIR ON QUANTICS. 
terms of So form subdivisions such that in each subdivision the sum of the numerical 
coefficients is =0: in passing by the reversal process to the value of S 3 , the terms 
are distributed into an entirely new set of subdivisions, and then in each of these 
subdivisions the sum of the numerical coefficients is found to be = 0 ; and the like 
as regards S 1 and S 2 . 
If in the expressions for S 0 , S 1} S. 2> S 3 we first write d = e=f— 1, thus in effect 
combining the numerical coefficients for the terms which contain the same powers in 
a, b, c, we find 
S 0 = ci 3 (— 2c 3 4 6c 2 — 6c 4 2) 
4 a 2 {b 2 (6c 2 - 12c - 6) 4 b (- 15c 3 4 33c 2 - 21c + 3) 
+ 6° (42c 4 - 147c 3 4 195c 2 - 117c 4 27)} 
4 a {6 4 . 0 4 b 3 (30c 2 - 36c 4 6) 4 6 2 (- 117c 3 + 249c 2 - 1.83c 4 51) 
+ b (9c 5 + 138c 4 - 378c 3 + 330c 2 - 99c) 4 6° (- 63c 6 4 165c 5 - 147c 4 4 45c 3 )} 
4 a° {6 6 .2 4 b 5 (— 15c 4 3) 4 6 4 (75c 2 — 69c 4 24) 4 b 3 (— 9c 4 — 167c 3 4 225c 2 — 87c — 2) 
+ 6 2 (72c 5 4 48c 4 - 186c 3 4 96c 2 ) 4 b (- 126c 6 4 201c 5 - 87c 4 ) 
+ b° (27c 8 - 45c 7 + 20c 6 )} ; 
which for c = 1 becomes 
= 2¥ - 126 5 + 306 4 - Ш 3 + 306 2 -126 + 2, that is, 2 (6 - l) 6 , 
and for 6=1 becomes = 0. 
5 2 = a 3 (Oc 2 + 0c + 0) 
+ a 2 {6 2 (0c + 0) + 6 (3c 3 - 9c 2 + 9c - 3) + 6° (24c 4 - 99c 3 + 153c 2 - 105c + 27)} 
+ a (6 4 .0 + 6 3 (— 6c 2 + 12c — 6) + 6 2 (— 24c 3 + 90c 2 — 108c + 42) 
+ 6 (33c 4 - 90c 3 + 54c 2 + 30c - 27) + 6° (- 27c 6 + 78c 5 - 66c 4 + 6c 3 + 9c 2 )} 
+ a° (6 5 (3c - 3) + 6 4 (- 15c 4 15) + 6 3 (6c 3 - 12c 2 + 36c - 30) 
+ 6 2 (9c 5 — 42c 4 + 84c 3 — 108c 2 + 57c) + 6 (9c 6 — 54c 5 + 96c 4 — 51c 3 ) 
+ 6° (9c 7 - 9c 6 )} : 
which for c = 1 becomes = 0. 
5 3 = a 3 (0c + 0) 
+ a 2 {6 2 .0 + 6 (Oc 2 + 0c + 0) + 6° (18c 4 - 72c 3 + 108c 2 - 72c + 18)} 
+ a {b 3 (0c + 0) + 6 2 (- 33c 3 4 99c 2 - 99c 4 33) 4 6 (57c 4 - 162c 3 4 144c 2 - 30c - 9) 
4 6° (- 60c 5 4 207c 4 - 261c 3 4 141c 2 - 27c)} 
4 a° {b 5 .0 4 6 4 (15c 2 - 30c 4 15) 4 6 3 (- 54c 3 4 102c 2 - 42c - 6) 
4 6 2 (123c 4 - 297c 3 4 243c 2 - 87c 4 18) 4 6 (- 27c 5 4 102c 4 - 96c 3 4 21c 2 ) 
4 6° (27c 7 - 66c 6 4 51c 5 - 12c 4 )} : 
which for c = 1 becomes = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.