697]
ON THE DOUBLE ^-FUNCTIONS.
423
We have then for each of the functions
ja-z lb -z /e-z
V d-z’ V d-z’ V d-z
a set of four equivalent expressions, the whole system being
Ia — z _ Va — b. a — c {V adb^ + V a^bc} _ Va — b. a — c{x — y)
V d — z
{be, ad)
VadbjCj — Va^jbc
_ Vq — 6. q - c {V abcjdj + V ad^cd} _ Vq — 6 . q — c {V acbA + V a 1 c 1 bd} <
(a — c) Vbdbjdj — (6 — d) VacajCj {a - b) Vede^ — (c — d) Vaba^j
/b^z 'J °a^d, “ C>) ^ bdbldl + (6 - d) V aca^j} K abc i d i “ ^ a i b i cd l
* ^ — ^ (6c, ad) VadbjCj — Va^bc
\J^~d ’ a ^) \/{( a —d) ^bcbiCi + (6 - c) Vadajdi}
(a — c) Vbdbjdj — (6 — d) VacaA (a — 6) VcdcA — (c — cZ) Vabajbj
^| {(a - 6) Vcdcjdj + (c — d) Vaba^} ^-J {Vacb^ — Va^bd}
v d — z {be, ad)
\/ ——^ {(q — d) VbcbjCj — (b — c) Vada^}
V Ct — Qj
V adbiCj — V ajdjbc
i/S« ac)
(q — c) Vbdbjdj — (6 — d) VacaA (q — b) Vcdcjdj — {c — d)\labajbj
The expressions in the like fourfold form for the functions sn {u + v), cn {u + v), dn {u + v)
are given p. 63 of my Treatise on Elliptic Functions.
It is easy to verify first that the four expressions for the same function of z are
identical, and next that the expressions for the three several functions
ja — z lb — z J <p—z
V d-'z’ V d-z'
are consistent with each other. For instance, comparing the first and second expressions
of JTJL. the equation to be verified is
adb^ — aadjbc = {x — y) (be, ad),
which is at once shown to be true. Again comparing the first and second expressions
for \J^— we ought to have
{(q - c) Vbdbyh + {b-d) Vaca x c a } {VadbA - Vaybbc} = {be, ad) {Vabcyb - Va^cd}.