558
A MEMOIR ON THE SINGLE AND DOUBLE THETA-FUNCTIONS.
[704
and hence
P = (x+dx + ^d 2 x) (x — dx -f £d 2 x), = x- + [xd-x — (?te) 2 },
and similarly for Q, R, S. Moreover, observing that x' and z' are even functions,
y' and w' are odd functions, of u', v, we have
x', y, z, iv =x, + ^d 2 xo, 0y o , z 0 + %d%, dw 0 ,
where d 2 x 0 , dy 0 , &c., are what dfx, dy, &c., become on writing therein u = 0, v = 0;
dy 0 , dw 0 are of course linear functions, 3 2 ^ 0 , d 2 z, quadric functions of u and v. The
values of x'-, y'-, z 2 , iv' 2 are thus x, 2 + x 0 d 2 x 0 , (0y o ) 2 , zf + z 0 d 2 z 0 , (dw 0 ) 2 ; and we have
œ 0 d 2 æ 0
%«) 2
z,d-z 0
(0W O ) 2
x 2 x' 2
- y-y' 2
+ z 2 z' 2
— w 2 w' 2 = xfx 2
+ Z 2 Z 0 2
+ X 2
-y 2
+ z 2
— vf,
x 2 y' 2
-y 2 x' 2
+ z 2 w' 2
— w 2 z' 2 = —y 2 x 0 2
- w‘% 2
-y-
+ X 2
— vf
fz 2 ,
x 2 z' 2
— y 2 w' 2
+ z 2 x’ 2
— W 2 y 2 = Z 2 xf
+ x 2 zf
+ z 2
— vf
+ X 2
-y->
x 2 w’ 2
- y 2 z' 2
4- z 2 y 2
— W 2 x 2 = — W 2 X 0 2
-yW
— w 2
+ z 2
~y~
+ of.
135. On substituting these values, the constant terms (or terms independent of
u, v) disappear of themselves; and the equations, transposing the second and third
of them, become
x 0 d 2 x 0 (dy 0 ) 2 z 0 d% (dw 0 ) 2
(z 0 4 -x 0 4 ){xd 2 x ~(dx) 2 }= (—x 0 2 x 2 + z 0 2 z 2 ) +( x 0 2 y 2 —z 0 2 w 2 ) +(—x 0 2 z 2 +z 0 2 x 2 ) + ( xfvf-zfy 2 ),
» [yd-y -(3y) 2 }= -( x ti y-z 0 2 w 2 ) -(-x 0 2 of+z 0 2 z 2 ) -( x 0 2 vf z 2 y 2 ) -(-x 0 2 z 2 +z 0 2 x 2 ),
„ {zd 2 z ~(dz) 2 }= (—x 0 2 z 2 +z 0 2 x 2 ) +( x 2 vf z 2 y 2 ) +(-x 0 2 x 2 +z 0 2 z 2 ) +( x 0 2 y 2 -z 0 2 w-),
„ {wd 2 w-(dw) 2 } = -( XqW 2 z 2 y 2 ) -(-x 2 z 2 + z 2 xr) -( x 0 2 y 2 -z 0 2 w 2 ) -(-x 0 2 of +z 0 2 z 2 ),
where it will be recollected that x, y, z, w mean S- 4 , %, S- 8 , ^- n (u); x 0 is S- 4 (0),
that is, c 4 , and z 0 is S- 8 (0), that is, c s . But the formulae contain also
d 2 x 0 = (<?;", c 4 iv , c/$V, vf, dy, = (Cy, c" \u, v),
d 2 z 0 =(c 8 '", c 8 iv , c 8 v $V, v') 2 , dw 0 = (Cn, c u "$V, v).
The formulae may be written
0$%
(9c 7 ) 2
c 8 0 2 c 8
(0Cn) 2
U U It
{■ ^.0%-(0^) 2 } c 2 .^ 2 c 2 .^ 2
c 2 . ^ ' c 2 . + 2
c 2 . ' c 2 . ^ 2
C 2 .^- 2 (f. + 2
(c 8 4 -c 4 4 ){ 4 4 4 }= (-4 4 +8 8)
+(4 7-8 11)
+(—4 8 +8 4)
+( 4 11 -8 7>
„{ 7 7 7 ] = -( 4 7 -8 11)
-(-4 4 +8 8)
-( 4 11 -8 7)
-(-4 8 +8 4),
„{ 8 8 8 }= (-4 8 +8 4)
+( 4 11 -8 7)
+(—4 4 +8 8)
+( 4 7-8 11),
„ {11 11 11 }=-( 4 11 -8 7)
—(—4 8 +8 4)
-(4 7-8 11)
—(—4 4 +8 8),
where 0 2 c 4 , d 2 c 8 , dc 7f 0c u are written in place of 0 2 ir o , d%, dy 0 , dw 0 . There is of course
a like system of equations for each of the Gopel tetrads.