705
D, E
j ustj
the
from
■e ,S Y
the
(viz.
:ircle
•ibed
like
ouch
lared
distance of centres, or what is the same thing, squared difference of radii + 4 times
the product of radii = squared distance of centres; that is,
cC 2 e 2 (cos u — cos v) 2 + 4 (k — ae cos u) (k — ae cos v) = a 2 (cos u — cos v) 2 + b 2 (sin u — sin vf,
or
2 (k — ae cos u) (k — ae cos v) = b 2 {1 — cos (u — v)}.
If for a moment we write tan \u = x, tan \v = y, and therefore
1 — y 2 . 2x . 2y
cos u = =- . cos v = -—^, sm u = , , sinii= ,—,
1 + X 2 ' 1 +y 2 1 + X 2 1 +y 2
. (1 — x 2 ) (1 — y 2 ) + 4xy . . 2 (x — y ) 2
V (1 + X 2 ) (1 + y 2 ) V ' (1 + OC“) (1 + y 2 )
we have
(, ae (1 — x?)) [, ae{\—y 2 )\
rVlrtt#-}“
(l+tf 2 )(l+y 2 y
{k — ae + (k + ae) x 2 } [k — ae + (k + ae) y 2 } — b 2 (x — y) 2 ,
which is readily identified with the circular relation
tan- „ - tan- * (*±“Y = tan- ." , ,,
J \k - ae) \k - ae) \a 2 - k 2
or, what is the same thing, in order that the circles U, V may touch, the relation
between the parameters u, v must be
tan -1 ■! ( 1 tan kvV — tan'
Considering in like manner a circle, centre the point W, coordinates (acosw, 6sinw),
and radius k — ae cos w, say the circle W; this will, as before, touch the circles R, S;
and we may make W touch each of the circles U, V; viz. we must have
'k + ae\*
'k + ae\ì
tan -1 ■{( " 1 ) tan— tan -1 \( 7 — ) tan -1 } = tan -1
tan -1 ■{ I ^ + Cl ~\ tan 4til — tan -1 {(^-— a6 \ tan -1 kw\ = tan
k 2 — a 2 e 2 \$
k 2 — a 2 e 2 \*
7 / y. w i vvv “ ' « f
where, in the last equation, tan -1 tan mus f be considered as denoting its
value in the first equation increased by ir. Hence, adding the three equations, we have
'k 2 — a 2 erV
7T = 3 tan -1
that is