Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

COORDINATES—CRUNODE. 
86 
Coordinates, Transformation of: i, 1-23—6, iv, 552—9, xi, 136—42; in Ency. Brit., xi, 558—61, 573—6. 
Copfaffian: the term, хш, 406. 
Coriolis, G.: motion of three bodies, iv, 541. 
Corpus: Sylvester’s theory of the, хш, 47. 
Correspondence: on cubic curves, i, 184, 190; homographic figures, i, 212; theory, vi, 263—91, x, 
259—60, xi, 482 ; in-and-circumscribed triangle, viii, 222—5; vicinal surfaces, vill, 301—8; of two 
variables, ix, 94—5, xii, 104; geometrical representation of imaginary variables, x, 316—23; con 
struction of a, xi, 38; quadric transformation between points and planes, xii, 100—1; of Cartesians, 
and generators of hyperboloid, xii, 587—9. 
Correspondence of Points: v, 542—5, vi, 22, vn, 168—70, xi, 440; two on a curve, vi, 9—13; on a 
conic, viii, 14—21; on surfaces, viii, 200—8; and lines, viii, 566. 
Cos-centre: the word, хш, 551. 
Cotes, R.: central forces, iv, 517, 586. 
Cotterill, T. : correspondence of points, vi, 22; problem of envelope and two circles, vii, 573; theorem 
of Geiser, ix, 506; goniometric problem, x, 295—7. 
Counter-barriers: the term, x, 320. 
Counter Order: the term, хш, 268. 
Couples: algebraic, i, 128—31. 
Cournot, A. A.: motion of a body, iv, 583, 586. 
Covariantive Forms and Tables: xi, 277—80; M to W of binary quintic, n, 282—309; asyzygetic, to 
degree 18, vi, 149—52; 34 concomitants of ternary cubic, xi, 342—56; of binary sextic, xi, 372—6, 
377—88; theory of tamisage, xi, 409—10. 
Covariants: the term, i, 577, 589, ii, 224, iv, 594, 605, x, 340, хш, 46; determined by differential 
equations, ii, 164—78; theory, n, 164—78; of binary cubic, n, 189, 260—2; binary quadratic, II, 189; 
binary quartic, ii, 190, 262—4; asyzygetic, n, 250 ; binary quantic, n, 269; of cubic, analogous to 
invariants of quartic, n, 553; bibliography, n, 598—601 ; of degree 6, vi, 148—53; of binary cubic, 
geometrical interpretation, vii, 332—3; the terms asyzygetic and irreducible, vn, 336; theory of 
number of irreducible, vii, 336—7; also new formulae for asyzygetic, vii, 337—40; also 23 funda 
mental, vii, 341—8; Gordan’s proof for the number, vii, 348—53; theory founded by Cayley, viii, 
xxix—xxx; his work, viii, xxx—xxxii; as transvectants, viii, 404—8; connected with an algebraical 
operation, ix, 537—42 ; derivatives of three binary qualities, x, 278—86; theorem, x, 430—1; a 
formula, xi, 122—4 ; formula and Schwarzian derivative, xi, 184—5 ; in geometry, xi, 474; Sylvester 
on, хш, 47 ; a hyperdeterminant identity, хш, 210—11; theory of derivation connected with particular 
operators, хш, 329—32; {see also Invariants, Linear Transformation, Seminvariants). 
Cox, H.: Taylor’s theorem, viii, 493. 
Cox, H., Jun.: non-Euclidian geometry, хш, 481. 
Cramer, G.: determinants, i, 63; curve classification, v, 354; transformation of plane curves, vi, 1. 
Creedy, C.: tangential of cubic, n, 558; calculations by, in, 361; elliptic motion, iv, 522, 586. 
Cremona, L.: on Steiner’s quartic surface, v, 423; general theory of correspondence, vi, 22—3; Casey’s 
equation, vi, 66—7; scrolls, vi, 327—8, vii, 245—51 ; polyzomal curves, vi, 575—6; rational trans 
formation, vii, 189, 200, 207, 222, 253—5, xi, 482, 484; theory of curve and torse, viii, 72, 76—9, 
87—91; geometric transformation, x, 611—2. 
Critic Centres {see Involution of Cubic Curves). 
Criticoids: and invariants, xii, 390 ; and reciprocants, хш, 366—7 ; of Cockle, хш, 366—7. 
Critic Points and Lines: the term, x, 311—5. 
Crofton, M, W.: polyzomal curves, vi, 507; Cartesian curves, vn, 582. 
Cross-points: the term, x, 317. 
Crunodal: the term, v, 402, 551, xi, 228. 
Crunode: defined, iv, 181, v, 295, 521, xi, 630.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.