Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

CUBIC-CURVES. 
88 
22; 12 — 2B 3 , vi, 422—6 ; 12-B 4 -C 2 , Vi, 426—8; 12-B S , vi, 429—30; 12-U 6 , vi, 431—3; 
12-^3-2(72, VI, 433—6; 12-B S -C 2 , VI, 437—9; 12 - U 7 , VI, 439—40; 12-4^, VI, 441—2; 
12 —25—(7 2 , vi, 443—4; 12-5 4 -2(7 2 , vi, 445—6; 12-B 6 -C 2 , vi, 447—8; 12— U s , vi, 448—9, 
451—5; 12-35 3 , vi, 449—50; synopsis of foregoing, vi, 450; cubic scrolls, vi, 451. 
Cubic Surfaces: triple tangent planes, i, 445—56, 589; skew, v, 90—4; delineation of scrolls, v, 110—2; 
nodal curve of developable from quartic equation, v, 135—7; theory, v, 138—40; five given 
lines on, vn, 177—8; double sixers, vn, 316—29; and tetrahedra, vn, 607; Wiener’s model with 
27 real lines, vm, 366—84; in Ency. Brit., xi, 633. 
Cubic Transformation of Elliptic Functions: hi, 266—7, vn, 44—6, x, 46, 58, xn, 518—22, 555, 
556—7 ; geometric illustration, ix, 522—6. 
Cubi-Cubic Curves: in space, v, 18—9. 
Cubinvariants: of binary quartic, i, 94; of quantic, n, 516; the term, iv, 606; of quadri-quadric 
function, xm, 67—8. 
Cuboid: potential of, ix, 272, 274—5, 278—80. 
Cumulant: the word, iv, 600—1. 
Cunningham, A. : on number of terms in a determinant, x, 579—80. 
Curtate: the term, xi, 155. 
Curvature: lines of, on ellipsoid, i, 36—9 ; of plane curve at double point, iv, 466—9; of surfaces, 
iv, 466—9 ; geodesic, xi, 323—30; (see also Curves of Curvature, Orthogonal Surfaces). 
Curves: and developables, i, 207—11, 485, 586—7, 589; and two dimensional geometry, n, 569—83; 
partial branch of, v, 425; reciprocation, v, 505—10; representation by cone and monoid surface, 
v, 552 ; nodal, spinode and cuspidal, of cubic surfaces, vi, 450, 595 ; and space of m dimensions, 
vi, 456—7 ; correspondence of two points on, vn, 39; graduation, vn, 426; mechanical description, 
of, vm, 138—44, 147—50, 151—5, x, 576; bicyclic chuck for, vm, 209—11; penultimate forms, 
vm, 258—61, 262—3; property of curve and torse, vm, 520—1; coordinates and equations, x, 
546; degenerate forms, xi, 218—20, 487—9; abstract geometry, xi, 441—2; in Ency. Brit., xi, 
460—89, 572—3, 579—80; and theory of equations, xi, 501 ; and function, xi, 540—1 ; and solid 
geometry, xi, 569; quadrature of, xi, 641—2; minimal surfaces, xm, 41; orthotomic, of a system 
of lines in a plane, xm, 346—7 ; (see also Correspondence, Cubic Curves, Nodal Curves, Polyzomal 
Curves). 
Curves, Algebraic: i, 46—54, 584. 
Curves, Bicursal: vm, 181—7. 
Curves, Classification of: v, 613—7 ; (see also Cubic Curve Classification). 
Curves, Excubo-quartic: v, 282. 
Curves in Space: analytical representation, iv, 446—55, 490—5, 616—8, vn, 66, xi, 9—13; defined by 
conoid and monoid surfaces, v, 7—20, 552, 553, 613; quartic, v, 11—5; quintic, v, 15—6, 24—30, 552, 
553, 613; quadri-cubic, v, 16; quadri-quartic, v, 17; cubi-cubic, v, 18—9; Halphen’s characteristic 
n in theory of, xm, 468—72. 
Curves, Intersections of: i, 25—7, 583, xii, 500—4; real, ix, 21. 
Curves of Curvature: near umbilicus, vn, 330—1; on surfaces, vm, 97—8, 145—6, 264—8; Ency. 
Brit., xi, 628, 635—6; wave surface, xii, 249; surfaces with spherical, xn, 601—38. 
Curves of Striction: i, 234. 
Curves, Opposite: v, 468. 
Curves, Parallel: envelopes and surfaces, iv, 123—33, 152—7, 158—65; and evolutes, vm, 31—5; 
theory of, x, 260; the critic, in solar eclipses, x, 311—5. 
Curves, Pedal: v, 113—4. 
Curves, Penultimate Quartic: vm, 526—8. 
Curves, Penumbral: geometrical theory of projection, vn, 483, 488—9, 489—92. 
Curves, Plane: double tangents of, iv, 186—206; conic of five-pointic contact of, iv, 207—39;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.