Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

97 
EQUATOR-FERRERS. 
Equator: action of gravity at the, ix, 241—3. 
Equilibrium: of four forces, v, 540—1, ix, 201; of skew surface, xi, 317—22. 
Equimomental Surfaces (see Surfaces). 
Equipollences : Bellavitis, xn, 473—4. 
Equipollent: the term, xn, 473. 
Equipotential Curve : hi, 258—61. 
Essential Singularity of Function: iv, 150. 
Eta-Functions: product, xn, 584—6; (see also Theta Functions). 
Euclid: space of, xi, 434—7; evolution of geometry, xi, 446; proof of I, 47, xi, 557. 
Euler, L. : rotation of solid body, I, 237, iv, 566, 567—9, 587, VI, 135—46; involution, I, 259; elliptic 
functions, i, 366; skew determinants, n, 214; transformation of coordinates, n, 497, iv, 553—7, 587; 
sums of series, hi, 127; indeterminate equations, hi, 205—7; polyhedra, iv, 84, 86—7, v, 62—5, 617; 
Determinate Orbitce Cometce, iv, 519, 587; problem of two centres, iv, 525—7, 587; three mutually 
attracting bodies in right line, iv, 538—9, 587; motion of three bodies, iv, 540, 587; inertia, iv, 
562; kinematics of solid body, iv, 580, 587; rotation formulae, v, 537; differential equation of, vn, 
261—2, ix, 592—608, xi, 68—9 ; binomial theorem, vm, 463; mathematical tables, ix, 463—6, 471—2, 
477—8, 481, 487; theorem on sums of squares, xi, 294; partitions, xi, 360, xn, 219; intersections of 
cubic curves, xi, 449; gamma function, xi, 535—6; eight-squares theorem, xn, 465; Latin squares, 
xih, 55; differential equation of, integrated by Richelot, xm, 525—9. 
Evans, A. B. : llegen’s tables, x, 586. 
Evectant: of qualities, n, 321. 
Evector: of qualities, ii, 321. 
Evolutes: theory of, v, 473—9; and parallel curves, vm, 31—45; nodes of, vm, 329, 351. 
Evolution : of geometry, xi, 445—8. 
Ewing, J. A. : curve-tracing mechanism, xm, 505. 
Excuboquartic: defined, v, 10, vii, 99; curves, vi, 87—8, xi, 9—13. 
Exoscopic : the term, i, 588. 
Expansions: in multiple sines and cosines, i, 19—24, 583; in Laplace’s coefficients, i, 375—6; of true 
anomaly, m, 139—42; numerical, iv, 470—2. 
Expectation: problem and solution in, x, 587; (see also Probability). 
Experience and Cognition: xi, 431. 
Exponential Functions: and double theta functions, x, 184—5; the term, xi, 524—7. 
Extension: in conformal representation, xi, 78. 
Extent: the term in seminvariants, xm, 269, 363. 
Extraordinaries: and non-commutative algebras, i, 128—31, 301; the term, xn, 60, 461. 
Facients: defined, n, 221, iv, 604, vi, 464. 
Factions: the term, ix, 426. 
Factorial Expressions: summation of, hi, 250—3. 
Factorials: developments of, n, 98—101, 594; problems, v, 574, vn, 597; binomial theorem and deriva 
tions, vm, 463—73 ; maxima of certain functions, vm, 548—9. 
Factors, Special: the term, i, 337. 
Facultative: the term, vi, 156, 365; lines of cubic surfaces, vi, 450. 
Facultative Points: of Sylvester, xm, 46. 
Family of Quadrics: envelope of, x, 589. 
Family of Surfaces: part of orthogonal system, vm, 269—91. 
Fermat, P. de: theorem of, xi, 457, 597, 611, 615—6. 
Ferrers, N. M.: conjugate partitions, n, 419 ; area of conic, hi, 143—8; correspondence, x, 290; Legendrian 
coefficients, xii, 563. 
C. XIV. 
13
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.