Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

HAMMOND-HERSCHEL. 
102 
essential singularity of function, iv, 105; central forces problem, iv, 520; hodograph, iv, 520; 
transformation of coordinates, iv, 558—9, 588; ray systems, vra, 504, xn, 571—5; surface orthogonal 
to set of lines, ix, 587; system of differential equations, x, 113—8; equations of central orbit, 
x, 613; on mathematics, xi, 431; algebra and time, xi, 443; conical refraction, xi, 449; multiple 
algebra, xii, 460, 466, 474—5; Sylvester on Hamiltonian numbers, xm, 48; (see also Differential 
Equations). 
Hammond, J.: theory of tamisage, xi, 409—10; seminvariants, xn, 253; Sylvester’s reciprocals, xm, 
47—8, 381, 388; on Hamiltonian numbers, xm, 48. 
Hansen, P. A.: lunar theory, hi, 13—24, 291—2; elliptic orbit, hi, 95; expansion of true anomaly, 
m, 140; planetary theory, hi, 26S—9, ix, 180—3; disturbed elliptic motion, hi, 270—1; disturbing 
function in lunar theory, hi, 293, 319—43; variation of plane of planet’s orbit, hi, 516—8; elliptic 
motion, iv, 522, 523, 588; relative motion, iv, 536, 588; pendulum, iv, 541, 588; spheroidal 
trigonometry, ix, 197. 
Hargreave, C. J. : on differential equations, viii, 458. 
Harley, R.; equation of differences, iv, 241, 245; symmetric products and quintics, iv, 310—13; 
quintics, v, 53; a differential equation, vn, 354; theory of equations, xi, 520; invariants, xn, 
390—1. 
Harmoconic: defined, v, 342. 
Harmonic Relations: of two lines or points, n, 96—7; theory of, and two or more quadrics, n, 
529—40. 
Harmonics: symmetric, n, 555; inscribed, hi, 113; reciprocal lines, xm, 58—9; and non-Euclidian 
geometry, xm, 482—9. 
Harriot, T.: mathematical discoveries, xi, 437. 
Hart, A. S.: cubic curves, iv, 499; relative motion, iv, 535; triple tangent planes, vi, 372, 375; 
nine-point circle, xm, 548. 
Haughton, S.: inertia, iv, 564—5, 588. 
Haupttangenten: (inflexional tangents), viii, 157. 
Heal, W. E.: bitangents of quintic, xm, 21. 
Hearn, G. W.: on a geometrical locus, i, 496; quartic curves, i, 496; quadric curves, v, 262. 
Heath, R. S.: non-Euclidian geometry, xm, 481, 499. 
Helmholtz, H. von: hydrodynamical equations, xm, 6—8. 
Hemihedron: the word, x, 328. 
Hemipolyhedron: the word, x, 328. 
Hensley, P. J.: foci of conics, iv, 505—9. 
Heptacron (see Polyacra). 
Heptagon : construction, x, 609. 
Hermite, C.: homographic transformation of quadric into itself, n, 107; elliptic integral and covar 
iants of quartic, n, 191; law T of reciprocity, n, 232, 234; skew invariant of quintic, n, 233; 
transformation of quadric function, n, 499; hyperdeterminants, n, 598—601; elliptic integrals, 
iv, 68—9; ternary cubics, iv, 326, 330; Tschirnhausen’s transformation, iv, 364—7, 375, vi, 165, 
170; automorphic transformation, iv, 416; elliptic functions and solution of quintic, iv, 484—9; 
matrices, v, 438, xii, 367—70, 386; quantics, vi, 147; quintic equation, vi, 170; nodal cubic, vi, 
174—6; canonical form of quintic, vi, 177—83; transformation of elliptic functions, vn, 44, ix, 
113, xii, 337, 416—7, xm, 31, 39; reduction of Abelian integrals, x, 214; concomitants of ternary 
cubic, xi, 342; elliptic functions, xi, 452; theory of equations, xi, 520; Abelian functions, xii, 
98; transformation of double theta functions, xii, 358; //-product theorem, xii, 584—6; cubic 
equations, xm, 349; omega functions, xm, 558. 
Herschel, Sir J. F. W.: finite differences, iv, 95, 107, 262; Brinkley’s formulae, x, 58—9; difference 
table, xi, 144.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.