Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

119 
POINT-PAIRS-POLYZOMAL. 
geometry, vi, 458; potential of, ix, 278—80; singularities of curves, xi, 468; coordinates of, as 
functions of parameter, xii, 290—1; and line distance, xm, 495—7; two-way, xm, 507 ; for- 
forwards, and back-backwards, xm, 510. 
Point-pairs: the term, n, 564—5, vi, 202, 206—7, 208, 210, 269, 594—5; degenerate forms of 
curves, xi, 218. 
Points: distances of, I, 1—4, 581; some theorems in geometry of position, i, 317—28; of inflexion, 
i, 345—9, 354; of osculation, i, 349—51 ; harmonic relation of two, n, 96—7; of cesser, defined, 
iv, 130; critical defined, iv, 130; five in a plane, v, 480—3; correspondence on plane curve 
of, v, 542—5; and circle, problem, v, 560; correspondence of two on a curve, vi, 9—13, 264—8, 
vn, 39; notation of, in Pascal’s theorem, vi, 116—23; abstract geometry, vi, 463; consecutive, 
vi, 467—9; system of 16, and polyzomal curves, vi, 501—3, 504—5; problem of random, vn, 
585; problem and solution of four in plane or space, vil, 585; four and conic, vil, 587; on 
particular sextic curve, ix, 504—7; branch- and cross-, x, 317; and lines, problem and solution, x, 
570; on a circle, function of, xi, 130; double- and pinch-, xi, 227; Mill on, xi, 432—3; 
representation on plane, xi, 442; evolution theory of curves, xi, 450—1 ; at infinity, xi, 464; 
relation between the distance of five in space, xn, 581—3; analytical formulae in regard to octad 
of, xn, 590—3; Sylvester’s facultative, xhi, 46; non-existence of a special group, xm, 212; 
syzygetic relations, xm, 224—7; non-Euclidian geometry, xm, 480—504; coordinates of, and 
non-Euclidian geometry, xm, 489—91; (see also Orthomorphosis). 
Point-systems: and one-dimensional geometry, n, 563—9, 583—86; and two-dimensional geometry, ii, 
569—83, 586—92. 
Poisson, S. D.: attraction of ellipsoids, hi, 155; planetary theory, in, 159, 201 ; variation of arbitrary 
constants in mechanical problems, hi, 163—5, 200, 201, 202; coefficient (a, b) of, m, 163; Hamilton’s 
method of dynamics, hi, 173—4, 200; integration of differential equations, hi, 180; distribution 
of electricity, iv, 92—5, 100—7, x, 299, xi, 1; elliptic motion, iv, 522; relative motion, iv, 535, 
591; motion of projectile, iv, 541, 591; inertia, iv, 563, 591; rotation of solid body, iv, 566, 
569, 573, 591 ; rotation round fixed point, iv, 582, 591; motion of solid body, iv, 583, 591 ; 
attraction of ellipsoidal shell, ix, 302; Jacobi’s theorem, x, 108—9, 110—3. 
Polar: of point, v, 570, x, 54, xi, 465. 
Polar Conjugate: of curve of third class, ii, 383. 
Polar Reciprocal: i, 230, 378, 416. 
Polarization: MacCullagh’s theorem, iv, 12—20. 
Poles: conjugate, of cubic curve, n, 382—5; two-dimensional geometry, n, 579—83, 586—92; the 
term, xi, 465. 
Pollock, Sir F.: on circumscribed triangle, in, 29—34. 
Poloid Curve: iv, 571—2. 
Polyacra: triangle-faced, and enumeration of polyhedra, v, 38—44. 
Polygons: in-and-circumscribed, ii, 87—9, 91—2, 138—44, 145—9, iv, 292—308, 435—41, v, 21—2, 
vin, 14—21, 212; partitions of close-, v, 62—5, 617; and triangles, problem, v, 589; potential 
of, ix, 266—80; automorphic function for, xi, 169, 179—83, 212—6; partitions of, xm, 93— 
113. 
Polyhedra: Poinsot’s four new regular solids, iv, 81—5, 86—7, 609; the problem of, iv, 182—5, 
609 ; autopolar, iv, 185; enumeration of, and triangle-faced polyacra, v, 38—40; partitions of 
close-, v, 62—5, 617; axial properties, v, 529—39; potential of, ix, 266—80. 
Polyhedral Functions (see Ilypergeometric Series, Schwarzian Derivative). 
Polyzomal Curves, Memoir on: vi, 470—576, vn, 115; introductory, vi, 470—2; Part I, polyzomal 
curves in general, vi, 473—97; definitions and preliminary remarks, vi, 473—4; the branches, vi, 
474—6; points common to two branches, vi, 476—8; singularities of a v zomal, vi, 478—9; 
zomals with common point or points, vi, 479—81; depression of order of v zomal curve from
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.