Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

QUADRATIC-QUANTICS. 
122 
Quadratic Residues: Eisenstein’s geometrical proof, hi, 39—43. 
Quadratic Transformation of Binary Form: vin, 398—400; (see also Transformation). 
Quadratics: resultant of three ternary, and invariant of biternary, iv, 349—58. 
Quadric Cones: of six given points, v, 4—6; through given points, x, 575. 
Quadric Curves: v, 70—2. 
Quadric Equations: transformation of two, i, 428—31, in, 129—31; automorphic linear transformation 
of, n, 497—505; solution by radicals, x, 9 ; two related, xi, 37. 
Quadric Integral: due to Aronhold, xii, 162—9. 
Quadricone: the term, vi, 334, 585, vii, 264. 
Quadricovariant: of quantic, ii, 520; or Hessian, ii, 545; the term, iv, 606. 
Quadrics: through nine points, i, 425—7; developable from two, i, 486—95; homographic transformation 
into itself, n, 105—12, 117, 133—7; theorem on surfaces, in, 115—7; equation of differences for, 
iv, 242; the term, iv, 604; sections of, v, 133—4; through three lines, vii, 177; in hyperdimensional 
space, ix, 79—83; covariants of, ix, 537—42; envelope of family of, x, 589; correspondence of 
confocal Cartesians with right line of a hyperboloid, xii, 587—9; (see also Binary Quadrics . 
Quadric Seminvariants: generating functions of, xin, 306. 
Quadric Surfaces: «-dimensional geometry, i, 62; diametral planes of, i, 255—8; centres of similitude, 
i, 329—31; note, i, 421—2, 589; abstract of memoir by Hesse, i, 425—7; conics inscribed in a, 
i, 557—63; envelope of certain, vm, 48—50; inversion, viii, 67—71; problem, and hypothetical 
theorems, vm, 550; and four-dimensional space, ix, 246—9; a system of, x, 269; Jacobian of, x, 
568; in Ency. Brit., xi, 576—9, 632; twisted cubics on, xii, 307—10; focals of, xra, 51—4; reciprocal 
lines, xm, 58—9; (see also Geodesic Lines). 
Quadric Transformation: between planes, vn, 213—5, 219—21, xii, 100—1 ; (see also Transformation). 
Quadri-cubic Curves in Space: v, 16. 
Quadricuspidal: the word, vii, 51. 
Quadrifactions: the term, ix, 426. 
Quadrilateral: and ellipse, v, 604; inscribed in bicircular quartic, x, 231—5; inscribable in circle, 
x, 578. 
Quadrinvariant: of binary quartic, first occurrence, i, 93; of quantic, n, 516; the term, iv, 606; 
of quadriquadric function, xm, 67—8. 
Quadriquadric: the term and kinds, v, 10, vii, 99. 
Quadriquadric Curves: in space, v, 17; on, v, 282; sextic torse for cuspidal edge having, x, 68—72; 
Abel’s theorem, xii, 186—9, 292—8, 321—5 ; and elliptic functions, xii, 292—8, 321—5. 
Quadriquadric Function: two invariants of, xm, 67—8. 
Quadriquadric Transformation: between spaces, vii, 229—30; (see also Transformation). 
Quadrispinal: the term, vii, 65. 
Quantics, Introductory Memoir: n, 221—34, 598—601. 
Quantics, Second Memoir: n, 250—75; numerical tables, n, 276—81. 
Quantics, Third Memoir: n, 310—35. 
Quantics, Fourth Memoir: n, 513—26 ; definitions, n, 513—5; covariants and invariants of degrees, 
two, three, four, n, 515—20; calculation of discriminant, n, 520—2; the catalecticant, lambdaic, 
and canonisant, n, 522—3; bezoutiants, cobezoutiants, n, 524—6. 
Quantics, Fifth Memoir: n, 527—57, 604—6; the single quadric, n, 527—9 ; two or more, and 
theories of harmonic relation and involution, n, 529—40 ; cubics, n, 540—5 ; quartics, ii, 545—56. 
Quantics, Sixth Memoir: analytical theory of binary and ternary, n, 561—83; general theory of dis 
tance, ii, 583—92; its style, vm, xxvii. 
Quantics, Seventh Memoir: chiefly ternary cubics, iv, 325—41; tables, iv, 333—41. 
Quantics, Eighth Memoir: vi, 147—90; introductory, iv, 147—8; binary quintic, covariants and 
syzvgies of degree 6, vi, 148—53; formulae for canonical form, vi, 153—4; 18-thic invariant, vi,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.