Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

QUARTIC-QUINTICS. 
124 
centres of 9 points, vn, 156; result as to dianomes, vn, 156; the symmetroid, (lineo-linear 
correspondence of quartic surfaces), vn, 157—9; ditto and Jacobian, vii, 160—3; symmetroid with 
given nodes, vn, 163—6, 259; Jacobian with given lines, vn, 167; correspondence on the Jacobian, 
vii, 168—70; further investigations as to Jacobian, vn, 171—5; persymmetrical case: Hessian 
of a cubic, vii, 175; quartics with 11 or more nodes, vii, 176—7; quadric surface through three 
given lines, vii, 177; condition that five given lines may lie in a cubic surface, vii, 177—8; 
condition that seven given lines may lie in a quartic, vii, 178; Jacobian of 6 points, vii, 178—9; 
locus of vertex of quadric cone which touches each of six given lines, vii, 180—1. 
Quartic Surfaces, Second Memoir: vii, 256—60, 609—10. 
Quartic Surfaces, Third Memoir: vii, 264—97, 609—10; preliminary considerations and classification, 
vii, 264—7; sextic curves, vii, 267—71; nodal determination, vii, 271—3; quartic surfaces resumed, 
vii, 273—4; enumeration of the cases, vii, 274—80; notation for cases afterwards considered, vii, 
280—1; 16-nodal surface and table, vii, 281—4; 15-nodal surface and table, vii, 285—8; equation 
of ditto, vii, 288—9; 14-nodal surface and table, vii, 289—92; 13-nodal surface and table, vii, 
293—7. 
Quartic Surfaces: on, v, 66—9; Steiner, v, 421—3, ix, 1—2; 16-nodal, v, 431—7, vii, 126—7, 
x, 157—65, 180—3, 604, xn, 95—7; note on, v, 465—7; recent researches, vii, 244—52; 
Pliicker’s models, vii, 298—302; some special, vii, 304—13, vm, 2—11, 25—8; surface and sphere, 
problem, vii, 589 ; section of surface, problem, vii, 593; penultimate forms of, vm, 262—3; 
symmetrical determinant = 0, x, 50—6; 12-nodal, x, 60—2, xm, 1—2; Hessian of, x, 274—7; 
tetrahedroid as 16-nodal, x, 437—40; equation of, x, 609; in Ency. Brit., xi, 633—4; (sre also 
Cyclide). 
Quartic Syzygy: and elliptic integrals, n, 191, iv, 68—9, 609. 
Quartic Transformation: of elliptic functions, ix, 103—6. 
Quartinvariants: of quantic, n, 516, 520. 
Quartisection: theory of numbers, xi, 84—96. 
Quasi-inversion: and orthomorphosis, xm, 192—3. 
Quasi-minima: the term, xm, 42. 
Quasi-normal: the term, xm, 228. 
Quaternary: the term, vi, 464. 
Quaternary Function: Hessian of, ix, 90—3. 
Quaternions: certain results, i, 123—6, 127; algebraic couples, I, 128—31 ; rotation, I, 405—9, 589, 
v, 537; formulae of, n, 107; transformation of quadrics, n, 135; skew determinants, n, 214; 
transformation of coordinates, iv, 559; the equation qQ—Qq'=0, xn, 300—4, 311—3; matrices, 
xii, 303; multiple algebra, xii, 474; hydrodynamical equations, xm, 8; versus coordinates, xm, 
541—4. 
Quet, J. A. : relative motion, iv, 536, 592. 
Quetelet, M. A.: theory of Gergonne, and on caustics, n, 339 ; wave surface, iv, 433 —4. 
Quinquisection : theory of numbers, xi, 314—6, xii, 72—3. 
Quintic Curves: and developables, I, 500—6; in space, v, 15—6, 20, 24—30, 552, 553, 613; in 
connexion with cubic and quartic, v, 580. 
Quintic Developables: and surfaces, v, 272—8, 518. 
Quintic Equations: conditions for systems of equal roots, n, 468—70; equation of differences, iv, 
150—1, 246—61, 276—91 ; Tschirnhausen’s transformation, iv, 375—94 ; tables, iv, 379—80, 387—90 ; 
Jerrard’s researches, v, 50—4, 77, 89; character of, vi, 161—5; solvibility by radicals, vii, 13—4, 
x, 11; theorem of Abel, xi, 132—5; solvable case of, xi, 402—4; and elliptic functions, xm, 
473; their sextic resolvents, xm, 473—9. 
Quintic Matrix : xii, 376—80. 
Quintics: auxiliary equation for, iv, 309—24; Jerrard’s form, iv, 392; soluble by elliptic functions,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.