Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

SAFFORD-SCHWARZIAN. 
128 
Safford, T. H. : orbits of Neptune and Uranus, ix, 183. 
St Laurent, M.: on caustics, n, 118, 121, 122, 347, 355, 368. 
Salmon, G.: cubic surfaces and triple tangents, I, 446, 456, 589 ; linear transformations and elim 
ination, i, 457—61; singular contact, i, 486; curves and developables, i, 492, 587; developable 
from quintic curve, I, 500—1, 505; systems of equations, I, 533; geometry of position, I, 555; 
hyperdeterminants, i, 579, n, 598—601; on a plane touching a surface, n, 29; triple tangent 
planes of third order, n, 29; invariant of ternary cubic, n, 325; quippian, II, 381; tables 
of covariants, n, 536—7; binary quartics, II, 549 ; tangential of cubic, n, 558 ; equation of orthotomic 
circle, hi, 48—50; reciprocal surfaces, iv, 21—7, vi, 329—58, 359, 582—91; surface parallel to 
ellipsoid, iv, 158—65; double tangents, iv, 187—206, 343, xi, 473—4; cubic curves, iv, 188; 
conics and five-pointic contact, iv, 207—39; higher algebra, iv, 608; curves in space, v, 9—20, 
614; quartic surfaces, v, 66, vil, 136; cubic surfaces, v, 140, vi, 359; scrolls, v, 168—9, 193, 
200; prohessian, v, 267 ; involution, v, 301 ; higher singularities of plane curves, v, 620; plane 
curves, vi, 2; invariants, vi, 108; quintics, vi, 154; hyperspace, vi, 191; elimination, and curves 
which satisfy given conditions, vi, 192; extension of his fundamental equations, vi, 329—31 ; 
polyzomal curves, vi, 472, 531, 560; tetrahedral scrolls, vn, 52, 65; sextic torse, vn, 113, 114; 
centro-surface of ellipsoid, vn, 130, vm, 316, 320, 323; rational transformation between two spaces, 
vn, 226, 237 ; bicircular quartic, vn, 575 ; locus in piano, vn, 606 ; correspondence with Cayley, 
vm, xv; on Cayley, vm, xxv; evolutes and parallel curves, vm, 33; theory of curve and torse, 
vm, 72, 76—9, 87—91; theory of invariants, vm, 386; transformation of unicursal surfaces, vm, 
390, 391 ; residuation, ix, 211; triple theta functions, x, 444; tortuous curves, xi, 9; higher 
plane curves, xi, 217; Gaussian theory of surfaces, xi, 332; concomitants of ternary cubic, xi, 
342; tables for binary sextic, xi, 377; Jacobian sextic equation, xi, 390, 400; equal roots of 
equations, xi, 407; works on geometry, xi, 546; minimal surfaces, xi, 639 ; bitangents of quintics, 
xm, 21 ; wave surfaces, xm, 252. 
Satellite Line: n, 383, v, 359. 
Scalars and Quaternions: xm, 541. 
Scalene Transformation of Plane Curve: ix, 527—34. 
Schellbach, C. H.: solution of Malfattfs problem, hi, 44—7. 
Schlafli, L.: discriminants, i, 584; elimination, n, 181—4, 404; symmetric functions, n, 454; hyper 
determinants, ii, 598—601; resultants, iv, 2—4; numerical expansions, iv, 471; cubic surfaces, vi, 
359, 361, 362, 372, vn, 250; quartic surfaces, vn, 308; modular equation for cubic transformation, 
xm, 64—5. 
Schlomilch, O.: attractions, i, 288; a definite integral, iv, 29. 
Schoolgirl Problem: i, 483, 589, v, 95—7. 
Schottky, F.: theta functions, xi, 242—9. 
Schroter, H.: Steiner’s quartic surface, v, 423 ; construction of regular pentagon, xn, 47. 
Schubert, H.: elliptic motion, hi, 473, 474, iv, 523; abzdhlende Geometrie, xi, 281—93, 459. 
Schwarz, H. A.: inverse elliptic functions, I, 586; developable surfaces, v, 517—9; deficiency, vi, 2; 
scrolls, vi, 312; quintic scrolls, vn, 250, 252; projections, ix, 508; surface of minimum area, x, 
63; hypergeometric series, xi, 125; orthomorphosis, xil, 328, xm, 188, 191, 192, 193, 202; 
Rummer’s differential equation, xm, 69. 
Schwarzian Derivative and Polyhedral Functions, Memoir: xi, 148—216; introductory, xi, 148—51; 
Part I, xi, 151—79; the derivative, xi, 151—3; quadric function of three or more inverts, xi, 153—6; 
functions P, Q, R, xi, 156—7; table ditto, xi, 158—9; differential equations involving (x, z) and (s, x), 
xi, 160—9; Schwarzian theory, xi, 169—76; connexion with differential equation for hypergeometric 
series, xi, 176—9; Part II, the polyhedral functions, xi, 179—216; origin and properties, xi, 
179—83; covariantive formulae, xi, 184—5; the forms of /5 and h 5, xi, 185—6; stereographic 
projection, xi, 187—9; groups of homographic transformations, xi, 189—90, 196—208; the regular
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.