SAFFORD-SCHWARZIAN.
128
Safford, T. H. : orbits of Neptune and Uranus, ix, 183.
St Laurent, M.: on caustics, n, 118, 121, 122, 347, 355, 368.
Salmon, G.: cubic surfaces and triple tangents, I, 446, 456, 589 ; linear transformations and elim
ination, i, 457—61; singular contact, i, 486; curves and developables, i, 492, 587; developable
from quintic curve, I, 500—1, 505; systems of equations, I, 533; geometry of position, I, 555;
hyperdeterminants, i, 579, n, 598—601; on a plane touching a surface, n, 29; triple tangent
planes of third order, n, 29; invariant of ternary cubic, n, 325; quippian, II, 381; tables
of covariants, n, 536—7; binary quartics, II, 549 ; tangential of cubic, n, 558 ; equation of orthotomic
circle, hi, 48—50; reciprocal surfaces, iv, 21—7, vi, 329—58, 359, 582—91; surface parallel to
ellipsoid, iv, 158—65; double tangents, iv, 187—206, 343, xi, 473—4; cubic curves, iv, 188;
conics and five-pointic contact, iv, 207—39; higher algebra, iv, 608; curves in space, v, 9—20,
614; quartic surfaces, v, 66, vil, 136; cubic surfaces, v, 140, vi, 359; scrolls, v, 168—9, 193,
200; prohessian, v, 267 ; involution, v, 301 ; higher singularities of plane curves, v, 620; plane
curves, vi, 2; invariants, vi, 108; quintics, vi, 154; hyperspace, vi, 191; elimination, and curves
which satisfy given conditions, vi, 192; extension of his fundamental equations, vi, 329—31 ;
polyzomal curves, vi, 472, 531, 560; tetrahedral scrolls, vn, 52, 65; sextic torse, vn, 113, 114;
centro-surface of ellipsoid, vn, 130, vm, 316, 320, 323; rational transformation between two spaces,
vn, 226, 237 ; bicircular quartic, vn, 575 ; locus in piano, vn, 606 ; correspondence with Cayley,
vm, xv; on Cayley, vm, xxv; evolutes and parallel curves, vm, 33; theory of curve and torse,
vm, 72, 76—9, 87—91; theory of invariants, vm, 386; transformation of unicursal surfaces, vm,
390, 391 ; residuation, ix, 211; triple theta functions, x, 444; tortuous curves, xi, 9; higher
plane curves, xi, 217; Gaussian theory of surfaces, xi, 332; concomitants of ternary cubic, xi,
342; tables for binary sextic, xi, 377; Jacobian sextic equation, xi, 390, 400; equal roots of
equations, xi, 407; works on geometry, xi, 546; minimal surfaces, xi, 639 ; bitangents of quintics,
xm, 21 ; wave surfaces, xm, 252.
Satellite Line: n, 383, v, 359.
Scalars and Quaternions: xm, 541.
Scalene Transformation of Plane Curve: ix, 527—34.
Schellbach, C. H.: solution of Malfattfs problem, hi, 44—7.
Schlafli, L.: discriminants, i, 584; elimination, n, 181—4, 404; symmetric functions, n, 454; hyper
determinants, ii, 598—601; resultants, iv, 2—4; numerical expansions, iv, 471; cubic surfaces, vi,
359, 361, 362, 372, vn, 250; quartic surfaces, vn, 308; modular equation for cubic transformation,
xm, 64—5.
Schlomilch, O.: attractions, i, 288; a definite integral, iv, 29.
Schoolgirl Problem: i, 483, 589, v, 95—7.
Schottky, F.: theta functions, xi, 242—9.
Schroter, H.: Steiner’s quartic surface, v, 423 ; construction of regular pentagon, xn, 47.
Schubert, H.: elliptic motion, hi, 473, 474, iv, 523; abzdhlende Geometrie, xi, 281—93, 459.
Schwarz, H. A.: inverse elliptic functions, I, 586; developable surfaces, v, 517—9; deficiency, vi, 2;
scrolls, vi, 312; quintic scrolls, vn, 250, 252; projections, ix, 508; surface of minimum area, x,
63; hypergeometric series, xi, 125; orthomorphosis, xil, 328, xm, 188, 191, 192, 193, 202;
Rummer’s differential equation, xm, 69.
Schwarzian Derivative and Polyhedral Functions, Memoir: xi, 148—216; introductory, xi, 148—51;
Part I, xi, 151—79; the derivative, xi, 151—3; quadric function of three or more inverts, xi, 153—6;
functions P, Q, R, xi, 156—7; table ditto, xi, 158—9; differential equations involving (x, z) and (s, x),
xi, 160—9; Schwarzian theory, xi, 169—76; connexion with differential equation for hypergeometric
series, xi, 176—9; Part II, the polyhedral functions, xi, 179—216; origin and properties, xi,
179—83; covariantive formulae, xi, 184—5; the forms of /5 and h 5, xi, 185—6; stereographic
projection, xi, 187—9; groups of homographic transformations, xi, 189—90, 196—208; the regular