98
A THEOREM IN SPHERICAL TRIGONOMETRY.
[732
that is,
mn O
— sin (A — B) = j( cos a ~ cos &)
cos c
sin C sin c
sin cl — cos c
(cos a — cos ò) ;
or, what is the same thing,
sin (J
— tan -|c sin (A — B) = —(cos a — cos b).
Here cosa —cosò is = (1 + cos a) — (1 + cos b) ; substituting for S * U ^ successively
sin c
and the right-hand side is
sm 6
1 + cos a . . 1 4- cos b . „
= . sm A ; sm B,
sm a sm b
= cot ^a sin A — cot b sin B;
whence, multiplying each side by tan^atan-|6, we have the relation in question.
For the second identity which is
tan {1 — tan\ct tan b cos {A — 5)} = tan \ b cos A + tan ^a cos B ;
if on the right-hand side we substitute for cosH, cosi? their values
cos a — cos b cos c . cos b — cos a cos c
7 7 7 and 7 7 ,
sm b sm c sm a sm c
the right-hand side becomes
sm a
cos a — cos b cos c cos b — cos a cos c
+
1
sin c I 1 + cos b ' 1 + cos a
whence, multiplying the whole equation by sinc(1 + cosa) (1 + cosò), it becomes
(1 — cos c) {(1 + cos a) (1 + cos b) — sin a sin ò cos {A — J5)}
= (1 + cos a) (cos a — cos ò cos c) + (1 + cos b) (cos ò — cos c cos a).
We have here
, . i • -r> (cos a — cos b cos c) (cos ò — cos c cos a) + □
cos (A — B) = cos A cos B + sm A sm B = . ■■■-.' =—t ,
v sm- 2 c sm a sm ò
by substituting for cosH, cos B their foregoing values, and for sin A, sin B their values
vn vo
sin ò sin c ’ sin a sin c
, where
□ = 1 — cos 2 a — cos 2 b — cos 2 c + 2 cos a cos ò cos c.