Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

98 
A THEOREM IN SPHERICAL TRIGONOMETRY. 
[732 
that is, 
mn O 
— sin (A — B) = j( cos a ~ cos &) 
cos c 
sin C sin c 
sin cl — cos c 
(cos a — cos ò) ; 
or, what is the same thing, 
sin (J 
— tan -|c sin (A — B) = —(cos a — cos b). 
Here cosa —cosò is = (1 + cos a) — (1 + cos b) ; substituting for S * U ^ successively 
sin c 
and the right-hand side is 
sm 6 
1 + cos a . . 1 4- cos b . „ 
= . sm A ; sm B, 
sm a sm b 
= cot ^a sin A — cot b sin B; 
whence, multiplying each side by tan^atan-|6, we have the relation in question. 
For the second identity which is 
tan {1 — tan\ct tan b cos {A — 5)} = tan \ b cos A + tan ^a cos B ; 
if on the right-hand side we substitute for cosH, cosi? their values 
cos a — cos b cos c . cos b — cos a cos c 
7 7 7 and 7 7 , 
sm b sm c sm a sm c 
the right-hand side becomes 
sm a 
cos a — cos b cos c cos b — cos a cos c 
+ 
1 
sin c I 1 + cos b ' 1 + cos a 
whence, multiplying the whole equation by sinc(1 + cosa) (1 + cosò), it becomes 
(1 — cos c) {(1 + cos a) (1 + cos b) — sin a sin ò cos {A — J5)} 
= (1 + cos a) (cos a — cos ò cos c) + (1 + cos b) (cos ò — cos c cos a). 
We have here 
, . i • -r> (cos a — cos b cos c) (cos ò — cos c cos a) + □ 
cos (A — B) = cos A cos B + sm A sm B = . ■■■-.' =—t , 
v sm- 2 c sm a sm ò 
by substituting for cosH, cos B their foregoing values, and for sin A, sin B their values 
vn vo 
sin ò sin c ’ sin a sin c 
, where 
□ = 1 — cos 2 a — cos 2 b — cos 2 c + 2 cos a cos ò cos c.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.