Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

132 
[741 
741. 
ON A THEOEEM OF ABEL’S EELATING TO A QUINTIC 
EQUATION. 
[From the Proceedings of the Cambridge Philosophical Society, vol. hi. (1880), 
pp. 155—159.] 
The theorem in question is given, Œuvres Completes, [Christiania, 1881], t. II., 
p. 266, as an extract from a letter to Crelle dated 14th March, 1826, as follows: 
“ Si une equation du cinquième degré dont les coefficients sont des nombres 
rationnels est résoluble algébriquement, on peut donner aux racines la forme suivante : 
. A 2 A A A A £ i £ Â A# 4 3 4 i£43 
x = c + Aa^papap + Apipapapa" 4- A. 2 apapa‘ ; ap 4- A-.apa^apa.p, 
où 
a = m 4 n \/( 1 4 e 2 ) + f\h (1 +e _ + \/(l + g 2 ))], 
a 1 = m-n V(1 4 e 2 ) 4 f[h (1 + e 2 — V(1 4- e 2 ))], 
a 2 = m + n V(1 + e-) — C[h (1 4- e 2 + \/(l 4- e 2 ))], 
a 3 — m — n V(1 4 e 2 ) - f[h (1 + e 2 - VG + e 2 ))], 
A =K+K'a 4 K"a 2 + K'"aa 2 , A, = K+ K'a, + K"a, + K"'a Y a 3 , 
A 2 = K + K'a 2 + K" a 4- K'"aa 2 , A 3 = K + 1C a, + K" a, 4- K'"api 3 . 
Les quantités c, h, e, m, n, K, K', K", K'" sont des nombres rationnels. Mais de 
cette manière l’équation x 5 + ax+b = 0 n’est pas résoluble tant que a et b sont des 
quantités quelconques. J’ai trouvé de pareils théorèmes pour les équations du 7 brae , 
ll ème , 13 ème , etc. degré.” 
It is easy to see that x is the root of a quintic equation, the coefficients of 
which are rational and integral functions of a, a 1} a 2 , a 3 : these coefficients are not 
symmetrical functions of a, a 1} a 2 , a 3 , but they are functions which remain unaltered
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.