744]
table of A m 0” + n (m) up to m = n = 20.
145
of the foregoing theorem, which is used in the following form \ viz. any column of
the table for instance the fifth, being
A, then the following column is A,
B,
2 B + A,
C,
3 G + B,
D,
4 D + C,
E,
oE + D,
+ E;
and then we obtain a good verification by taking the sum of the terms in the new
column, and comparing it with the value as calculated from the formula,
Sum = 2A + SB + 4(7 + 5D + 6E.
Observe that, in the two calculations, we take successive multiples such as 4D and
5D of each term of the preceding column, and that the verification is thus a safe
guard against any error of multiplication or addition.
Table, No. 1, of A m 0 w -rII(m).
<
a
t—1
0 1
0 2
0 3
0 4
0 5
0«
0 7
0 8
0 9
0 i°
0 11
0 12
0 13
0 14
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
o
1
3
7
15
31
63
127
255
511
1 023
2 047
4 095
8 191
3
1
6
25
90
301
966
3 025
9 330
28 501
86 526
261 625
788 970
4
1
10
65
350
1 701
7 770
34 105
145 750
611 501
2 532 530
10 391 745
5
1
15
140
1 050
6 951
42 525
246 730
1 379 400
7 508 501
40 075 035
6
1
21
266
2 646
22 827
179 487
1 323 652
9 321 312
63 436 373
7
1
28
462
5 880
63 987
627 396
5 715 424
49 329 280
8
1
36
750
11 880
159 027
1 899 612
20 912 320
9
1
45
1 155
22 275
359 502
5 135 130
10
1
55
1 705
39 325
752 752
11
1
66
2 431
66 066
12
1
78
3 367
13
1
91
14
1
15
16
17
18
19
20
1
C. XI.
19