Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

744] 
table of A m 0” + n (m) up to m = n = 20. 
145 
of the foregoing theorem, which is used in the following form \ viz. any column of 
the table for instance the fifth, being 
A, then the following column is A, 
B, 
2 B + A, 
C, 
3 G + B, 
D, 
4 D + C, 
E, 
oE + D, 
+ E; 
and then we obtain a good verification by taking the sum of the terms in the new 
column, and comparing it with the value as calculated from the formula, 
Sum = 2A + SB + 4(7 + 5D + 6E. 
Observe that, in the two calculations, we take successive multiples such as 4D and 
5D of each term of the preceding column, and that the verification is thus a safe 
guard against any error of multiplication or addition. 
Table, No. 1, of A m 0 w -rII(m). 
< 
a 
t—1 
0 1 
0 2 
0 3 
0 4 
0 5 
0« 
0 7 
0 8 
0 9 
0 i° 
0 11 
0 12 
0 13 
0 14 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
o 
1 
3 
7 
15 
31 
63 
127 
255 
511 
1 023 
2 047 
4 095 
8 191 
3 
1 
6 
25 
90 
301 
966 
3 025 
9 330 
28 501 
86 526 
261 625 
788 970 
4 
1 
10 
65 
350 
1 701 
7 770 
34 105 
145 750 
611 501 
2 532 530 
10 391 745 
5 
1 
15 
140 
1 050 
6 951 
42 525 
246 730 
1 379 400 
7 508 501 
40 075 035 
6 
1 
21 
266 
2 646 
22 827 
179 487 
1 323 652 
9 321 312 
63 436 373 
7 
1 
28 
462 
5 880 
63 987 
627 396 
5 715 424 
49 329 280 
8 
1 
36 
750 
11 880 
159 027 
1 899 612 
20 912 320 
9 
1 
45 
1 155 
22 275 
359 502 
5 135 130 
10 
1 
55 
1 705 
39 325 
752 752 
11 
1 
66 
2 431 
66 066 
12 
1 
78 
3 367 
13 
1 
91 
14 
1 
15 
16 
17 
18 
19 
20 
1 
C. XI. 
19
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.