753] ON A THEOREM RELATING TO THE MULTIPLE THETA-FUNCTIONS.
243
with the new characters ¡x + p! and v + v is, save as to an exponential factor, equal
to the function © (u + 2-sr / ; p, v) with the original characters ¡i, v, but with the new
arguments u + %a'.
Notation.
This is in some measure a development of the notation employed in my “ Memoir
on the Theory of Matrices,” Phil. Trans, t. cxlyiii. (1858), pp. 17—37, [152] I use
certain single letters u, etc. to denote sets or rows each of p letters, u = {u 1} ..., u p ):
or if, to fix the ideas p — 3, then u = (u ly u 2 , u 3 ), and so in other cases.
But I use certain other letters a, etc. to denote squares or matrices each of p 2
letters ; thus, if p = 3 as before,
a =
in parentheses
(«) =
tt n ,
«12,
«13
y
a 21 ,
«22,
«23
$31)
«32,
«33
matrix is
denoted by the same
tin,
«21,
«31
®12,
«22,
«32
«13,
«23,
«33
u,
= («1,
u 2 ,
u 3 ) and v, =■ (v l , v 2
row (w, + v x , u 2 + v2, «3 + V3): and in like manner the sum a + b of the two matrices,
or square-letters a and b, denotes the matrix
«n + 2*ii,
«12 T ^12,
«13 + b 13
«21 + ^21,
«22 + b 22 ,
«23 1“ b 23
«31 + b-.a,
«32 + ^32,
«33 + b 33
and similarly for a sum of three or more terms.
The product uv, =(u 1} u 2 , u 3 )(v u v 2 , v 3 ), of the two row-letters u, v denotes the
single term u 1 v 1 + u 2 v 2 + u 3 v 3 . We have uv — vu.
The product
au, =
«111
«12,
«13
«21,
«22,
«23
«31,
«32,
«33
(u u u 2 , u 3 ),
of a preceding square-letter a and a succeeding row-letter u, denotes the set or row
(a n , a 12 , a 13 )(«i, u 2 , u 3 ), (a 21 , a^, a.P){;u u u 2 , u 3 \ (a 31 , a 32 , a^){u lf u 2 , u 3 );
the notation ua is not employed.
31—2