Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

753] ON A THEOREM RELATING TO THE MULTIPLE THETA-FUNCTIONS. 
243 
with the new characters ¡x + p! and v + v is, save as to an exponential factor, equal 
to the function © (u + 2-sr / ; p, v) with the original characters ¡i, v, but with the new 
arguments u + %a'. 
Notation. 
This is in some measure a development of the notation employed in my “ Memoir 
on the Theory of Matrices,” Phil. Trans, t. cxlyiii. (1858), pp. 17—37, [152] I use 
certain single letters u, etc. to denote sets or rows each of p letters, u = {u 1} ..., u p ): 
or if, to fix the ideas p — 3, then u = (u ly u 2 , u 3 ), and so in other cases. 
But I use certain other letters a, etc. to denote squares or matrices each of p 2 
letters ; thus, if p = 3 as before, 
a = 
in parentheses 
(«) = 
tt n , 
«12, 
«13 
y 
a 21 , 
«22, 
«23 
$31) 
«32, 
«33 
matrix is 
denoted by the same 
tin, 
«21, 
«31 
®12, 
«22, 
«32 
«13, 
«23, 
«33 
u, 
= («1, 
u 2 , 
u 3 ) and v, =■ (v l , v 2 
row (w, + v x , u 2 + v2, «3 + V3): and in like manner the sum a + b of the two matrices, 
or square-letters a and b, denotes the matrix 
«n + 2*ii, 
«12 T ^12, 
«13 + b 13 
«21 + ^21, 
«22 + b 22 , 
«23 1“ b 23 
«31 + b-.a, 
«32 + ^32, 
«33 + b 33 
and similarly for a sum of three or more terms. 
The product uv, =(u 1} u 2 , u 3 )(v u v 2 , v 3 ), of the two row-letters u, v denotes the 
single term u 1 v 1 + u 2 v 2 + u 3 v 3 . We have uv — vu. 
The product 
au, = 
«111 
«12, 
«13 
«21, 
«22, 
«23 
«31, 
«32, 
«33 
(u u u 2 , u 3 ), 
of a preceding square-letter a and a succeeding row-letter u, denotes the set or row 
(a n , a 12 , a 13 )(«i, u 2 , u 3 ), (a 21 , a^, a.P){;u u u 2 , u 3 \ (a 31 , a 32 , a^){u lf u 2 , u 3 ); 
the notation ua is not employed. 
31—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.