250
[754
754.
ON THE CONNEXION OF CERTAIN FORMULÆ IN ELLIPTIC
FUNCTIONS.
[From the Messenger of Mathematics, vol. ix. (1880), pp. 23—25.]
In reference to a like question in the theory of the double ^-functions, it is
interesting to show that (if not completely, at least very nearly) the single formula
that is,
n (u a)-u &a I tlor 0(M - g)
n ’ ' 0£t 2 “0(» + «)’
k 2 sn a en a dn a sn 2 u du ©A .. ©(w — a)
= “0ï + i lo «ë(ST5) ;
1 — k 2 sn 2 a sn 2 u
leads not only to the relation
. ^ , 2k'K . , -
log ®u = \ log + i (1
— v? — k 2 J du J du sn 2 u,
between the functions ©, sn, but also to the addition-equation for the function sn.
Writing in the equation a indefinitely small, and assuming only that sna, cnct,
dn a then become a, 1, 1, respectively, the equation is
r i „ 7 a© 0 . , ©îî — a © a
k-a sn 2 « du = u „ _ + log „——
J 0 ©0 2 6 ©« + «© «
©« — aWu
©"0 ©'«
= ua — « FT" ,
©0 ©t£
that is,
©"0 [ 2
•pr- = u -prpr — k 2 du sn- u,
©M ©0 Jo
or, integrating from u = 0, this is
©"0 f f
log ©it = C+^id — k 2 du du sn 2 u,
©0 Jo Jo