Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

346 
ON THE 34 CONCOMITANTS OF THE TERNARY CUBIC. 
[770 
Current No. Order=0. 
15 P = 330 = — l (6c£ 3 + car] 3 + ab£ 3 ) + (— abc + 4Z 3 ) %y%. 
16 Q = 530 = (abc — 10£ 3 ) (bef 3 + carf + abt, 3 ) — QP {babe + 41 3 ) %y(. 
17 F = 460 = 5 2 c 2 f + cW + a 2 b 2 £ 6 - 2 (abc + 16£ 3 ) {ay 3 £ 3 + &£ 3 £ 3 + c£V) 
— 24£ 2 (5c£ 3 + carf + ab'Cf) &ft — 24Z {abc + 2l 3 ) % 2 y 2 ?. 
18 II = 1290 = {abc + SI 3 ) 3 [cy 3 - b?. a? - c?. b? - arf}. 
Third Part, (8 + 8 =) 16 forms. Class less or greater than Order. 
Class less than Order. 
19 J = 414 = {abc + 81 3 ) [gx {by 3 — cz 3 ) + yy {cz 3 — ax 3 ) + £z {ax 3 — by 3 )}. 
20 K = 514 = {abc + 81 3 ) [alx 3 — 2blxy 3 — 2clxz 3 + Sbcy 2 z 2 \..}. 
21 K' = 714 = {abc + 81 3 ) [{abc + 2Z 3 ) {aP — 2bxy 3 — 2cxz 3 ) — 18bcPy 2 z 2 ~\...}. 
22 E = 625 = {abc + 81 3 ) {£ 2 (by 3 — cz 3 ) [2l 2 aP + bcyz\... 
+ vZ(% 3 — C2 ?) [4aloP + 2Pyz\...}. 
23 E' = 825 = {abc + 8Z 3 ) {£ 2 (by 3 — cz 3 ) [7 {abc + 21 3 ) x 2 — 3bcPyz]... 
+ y%(by 3 — cz 3 ) [a {abc — 4Z 3 ) x 2 + l {abc + 21 3 ) yz]...}. 
24 E" = 1025 = (abc + 81 3 ) {| 2 (by 3 — cz 3 ) [{abc + 21 3 ) 2 x 2 + ISbcPyz]... 
+ ’?£’{by 3 — cz 3 ) [— 12al 2 {abc + 21 3 ) x 2 + (abc + 2l 3 ) 2 yz]...}. 
25 M = 917 = {abc + 81 3 ) 2 {£(by 3 — cz 3 ) [balx^ — blxy 3 — clxz 3 — 3beyfz 2 ].. 
26 M' =1117 = {abc + 81 3 ) 2 {f (by 3 — cz 3 ) [{abc + 21 3 ) {oax 3 — bxy 3 — cxz 3 ) 
+ 18 bcl 2 y 2 z 2 ]...}. 
Order less than Class. 
27 J = 841 = {abc + 81 3 ) 2 [x%a {erf — b?) + yyb {a? — cf 3 ) + z? (b? — arf)}. 
28 K = 541 = {abc + 81 3 ) [x[bc? — 2ca%rf — 2ab%? — Qaly 2 ?-]...}. 
29 K' = 741 = {abc + 81 3 ) [x [l 2 (be? — 2ca%rf — 2ab%?) + a {abc + 21 3 ) y 2 ?]...}. 
30 . E = 652 = {abc + 81 3 ) [x 2 {erf — b?) [2all; 2 + a 2 y?\... 
+ yz {erf — b?) [4il 2 ? + 2 aly?...}. 
31 E' = 852 = (abc + 81 3 ) [x 2 {cy 3 — b?) [a {abc — 41 3 ) ? — 6a 2 l 2 y£],.. 
+ yz {cy 3 — btf) [4il {abc + 2i 3 ) ? + a {abc — 4 l 3 )y£]...}. 
32 E" = 1052 = (abc + 81 3 ) [x 2 {cy 3 — b?) [— Sal 2 {abc + 21 3 ) ? + 9a 2 Py£]... 
+ yz {cy 3 — b?) [{abc + 21 3 ) 2 ? — Sal 2 {abc — 41 3 ) y£]...}. 
33 M = 771 = {abc + 81 3 ) {x {cy 3 — 6£ 3 ) [{abc — 81 3 ) £ 4 — a 2 c%y 3 — a 2 b%£ 3 
— \2aP% 2 y(, — Ga 2 ly 2 ip]...}. 
34 M' = 971 = {abc 4- 81 3 ) [x {erf - b?) [P {7abc + 81 3 ) ? - 3a 2 cl 2 %y 3 - 3a 2 bl 2 ^ 3 
+ 4<al {abc — l 3 ) % 2 y( + a 2 {abc — 101 3 ) y 2 £ 2 ]...}-
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.