368
[773
773.
ON THE 8-SQUARE IMAGINARIES.
[From the American Journal of Mathematics, voi. iv. (1881), pp. 293—296.]
I write throughout 0 to denote positive unity, and uniting with it the seven
imaginaries 1, ...,7, form an octavic system 0, 1, 2, 3, 4, 5, 6, 7, the laws of com
bination being
0- = 0, l 2 == 2 2 = 3 2 = 4 2 = 5 2 = 6 2 = 7 2 = - 0,
123 = e x , 145 = e 2 , 167 = e 3 ,
246 = e 4 , 257 = e s ,
347 = e 6 , 356 = e 7 ,
where e = ±, viz. each e has a determinate value + or — as the case may be ; and
where the formula, 123 = e x , denotes the six equations
23= e x l, 31= e x 2, 12= e x 3,
32 = — e x l, 13 = - e,2, 21 = -e x 3,
and so for the other formulae. The multiplication table of the eight symbols thus is
0
1
2
3
4
5
6
7
0
0
1
2
3
4
5
6
7
1
1
- 0
e x 3
-e x 2
e„ 5
— e 3 4
c 3 7
-6 3 6
2
2
-e x 3
- 0
«il
«46
€ 5 7
-«4 4
-< 5 5
3
3
e x 2
-e X l
- 0
«6 7
€ 7 6
— 67 5
4
4
-6 2 5
-e 4 6
~ e e 7
- 0
€ 2 1
e 4 2
€ 6 3
5
5
e 2 4
— e 7 6
-€ 2 1
- 0
e 7 3
e 5 2
6
6
-e 3 7
<4*
€y 5
— 6 4 2
— e 7 3
- 0
%1
7
7
e 3 6
^5
— e G 3
— e 5 2
~« 8 1
- 0