Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

368 
[773 
773. 
ON THE 8-SQUARE IMAGINARIES. 
[From the American Journal of Mathematics, voi. iv. (1881), pp. 293—296.] 
I write throughout 0 to denote positive unity, and uniting with it the seven 
imaginaries 1, ...,7, form an octavic system 0, 1, 2, 3, 4, 5, 6, 7, the laws of com 
bination being 
0- = 0, l 2 == 2 2 = 3 2 = 4 2 = 5 2 = 6 2 = 7 2 = - 0, 
123 = e x , 145 = e 2 , 167 = e 3 , 
246 = e 4 , 257 = e s , 
347 = e 6 , 356 = e 7 , 
where e = ±, viz. each e has a determinate value + or — as the case may be ; and 
where the formula, 123 = e x , denotes the six equations 
23= e x l, 31= e x 2, 12= e x 3, 
32 = — e x l, 13 = - e,2, 21 = -e x 3, 
and so for the other formulae. The multiplication table of the eight symbols thus is 
0 
1 
2 
3 
4 
5 
6 
7 
0 
0 
1 
2 
3 
4 
5 
6 
7 
1 
1 
- 0 
e x 3 
-e x 2 
e„ 5 
— e 3 4 
c 3 7 
-6 3 6 
2 
2 
-e x 3 
- 0 
«il 
«46 
€ 5 7 
-«4 4 
-< 5 5 
3 
3 
e x 2 
-e X l 
- 0 
«6 7 
€ 7 6 
— 67 5 
4 
4 
-6 2 5 
-e 4 6 
~ e e 7 
- 0 
€ 2 1 
e 4 2 
€ 6 3 
5 
5 
e 2 4 
— e 7 6 
-€ 2 1 
- 0 
e 7 3 
e 5 2 
6 
6 
-e 3 7 
<4* 
€y 5 
— 6 4 2 
— e 7 3 
- 0 
%1 
7 
7 
e 3 6 
^5 
— e G 3 
— e 5 2 
~« 8 1 
- 0
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.