Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

773] 
ON THE 8-SQUARE IM AGIN ARIES. 
369 
Hence if 0, 1, 2, 3, 4, 5, 6, 7 and O', 1', 2', 3', 4', 5', 6', 7' denote ordinary 
algebraical magnitudes, and we form the product 
(00 +11 + 22 + 33 + 44 + 55 + 66 + 77) (O'O +11 + 2'2 + 3'3 + 4'4 + 5'5 + 6'6 + 77), 
this is at once found to be = 
(00' - 11' - 22' - 33' - 44' - 55' - 66' - 77') 0 
+ (01' + 0'1+e,23 + 6 2 45 + e 3 67 )1 
+ (02' + 0'2 + 6,31 + 6,46 + e 3 57 )2 
+ (03' + 0'3 + ei 12 + e 6 47 + e 7 56 ) 3 
+ (04' + 0'4 + e 1 51 + e 4 62 + 6«73 )4 
+ (05'+ 0'5 + e 2 14 + 6 5 72 + e 7 63 )5 
+ (06' + 0'6 + é 3 7l+6 4 24 + e 7 35 )6 
+ (07' + 0'7 + e 3 16 + 6 s 25 + 6 6 34 ) 7, 
where 12 is written to denote 12 — 12, and so in other cases. 
The sum of the squares of the eight coefficients of 0, 1, 2, 3, 4, 5, 6, 7 respectively 
will, if certain terms destroy each other, be 
= (O 2 + 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 ) (O' 2 + l' 2 + 2' 2 + 3' 2 + 4' 2 + 5' 2 + 6' 2 + 7' 2 ) ; 
viz. the sum of the squares contains the several terms 
e,6 2 23.45, 6,6,23.67, 6,6,31.46, f,e g 31.57, 6,6 6 12.47, 6,e 7 12.56, e 2 6 3 45.67, 
6 4 e 7 24.35, e 4 e s 62.73, e 2 e 7 14.63, e 2 e 6 51.73, 6 2 6 5 14.72, e 2 e 4 51.62, 6 4 6 5 46.57, 
e 5 e 6 25.34, e 5 6 7 72.63, e ;i 6 6 16.34, e 3 e 7 7l.35, 6,,6,71.24, e 3 e 5 16.25, 6 6 6 7 47.56, 
and observing that 21 = —12, etc., and that we have identically 
23.45 + 24.53 + 25.34 = zero, etc., 
then the three terms of each column will vanish, provided a proper relation exists 
between the e’s : viz. the conditions which we thus obtain are 
become 
6,e 2 = - e,6 7 = 
e i e 3 = — e 4 e 6 = 
e 5 e 7> 
6,6, = - 6 3 6g = 
f 2 e 7» 
6,65 = e 3 e 7 = 
e,e 6 = e 2 e 5 = 
- *3*4, 
eie? = — e 2 6 4 = 
e 3 e 5 ) 
^2^3 = 6 4 e 5 = 
e<+7- 
generality assume e ; 
+ — — e 4 e 7 — 
e 5 e 6> 
+ = e 4 6 6 = 
<*€7, 
+ = - e 4 e 5 = 
6 S e 7> 
II 
uf 
1 
II 
<¿7 
- e 7 , 
11 
ttT 
11 
<4J 
e 8 , 
e 5 = - e, 
= e. 
C. XI. 
6 7 — — e 4 
47
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.