402
[777
777.
A SOLVABLE CASE OF THE QUINTIC EQUATION.
[From the Quarterly Journal of Pure and Applied Mathematics, vol. xvm. (1882),
pp. 154—157.]
The roots of the general quintic equation
(a, h, c, d, e, l) 5 = 0
may be taken to be
--+ B+ C+ D+ E
- „ + CO* „ + CO 3 „ + (0 2 „ + 03 „
- „ + CO 3 „ + CO „ + CO* „ + (O 2 „
~ „ + CO 2 „ + CO* „ + CO „ + CO 3 „
- „ + (O „ + CO 2 „ + CD 3 „ + CO* „ ,
where co is an imaginary fifth root of unity; and if one of the four functions B,
C, D, E is = 0, say if E = 0 (this implies of course a single relation between the
coefficients), then the equation is solvable.
Writing x = f ^, we have
(a, b, e, d, l) = = (a'. 0, o', d', e'.f'H 1)»,
where
a' = a,
ac' = ac — h 2 ,
a 2 dl — a 2 d — Babe + 2b 3 ,
add = a 3 e — 4ta 2 bd + 6ab 2 c — 3b*,
a*f = a*f — 5ci s be + 10a& 2 d — 10a& 2 c + 46 5 ,
and the roots of the new equation
<«', 0, o', d', 1) 5 = 0