Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

402 
[777 
777. 
A SOLVABLE CASE OF THE QUINTIC EQUATION. 
[From the Quarterly Journal of Pure and Applied Mathematics, vol. xvm. (1882), 
pp. 154—157.] 
The roots of the general quintic equation 
(a, h, c, d, e, l) 5 = 0 
may be taken to be 
--+ B+ C+ D+ E 
- „ + CO* „ + CO 3 „ + (0 2 „ + 03 „ 
- „ + CO 3 „ + CO „ + CO* „ + (O 2 „ 
~ „ + CO 2 „ + CO* „ + CO „ + CO 3 „ 
- „ + (O „ + CO 2 „ + CD 3 „ + CO* „ , 
where co is an imaginary fifth root of unity; and if one of the four functions B, 
C, D, E is = 0, say if E = 0 (this implies of course a single relation between the 
coefficients), then the equation is solvable. 
Writing x = f ^, we have 
(a, b, e, d, l) = = (a'. 0, o', d', e'.f'H 1)», 
where 
a' = a, 
ac' = ac — h 2 , 
a 2 dl — a 2 d — Babe + 2b 3 , 
add = a 3 e — 4ta 2 bd + 6ab 2 c — 3b*, 
a*f = a*f — 5ci s be + 10a& 2 d — 10a& 2 c + 46 5 , 
and the roots of the new equation 
<«', 0, o', d', 1) 5 = 0
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.