Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

68 
[725 
725. 
NEW FORMULAE FOR THE INTEGRATION OF 
[From the Messenger of Mathematics, vol. vm. (1879), pp. 60—62.] 
I have found in regard to the differential equation 
+ dy = 0 
f(a — x.h — x. c — x.d — x) f(a — y.b — y.c — y.d — y) ’ 
a system of formulae analogous to those given, p. 63, of my Treatise on Elliptic 
Functions, for the values of sn(w + 0, cn (u + v), dn (u + v). Writing for shortness 
a, b, c, d — a — x, b — x, c — x, d — x, 
a u K c,, d! = a-y, b-y, c-y, d-y, 
and (be, ad) to denote the determinant 
1, x + y, xy , 
1, b + c, be 
1, a + d, ad 
and (cd, ab), (bd, ac) to denote the like determinants; then the formulae are 
f(a — b.a — c) {VCadbjCj) + VOidJbc)} 
(be, ad) 
_ f(a — b .a — c)(x — y) 
VCadb^j) — -v/Oidjbc) ’ 
_f(a — b.a — c) |y'(abc 1 d 1 ) + VOifycd)} 
(a — c) VCbdbidj) - (b — d) //(aca^) ’ 
_ f(a — b .a — c) {VCacbidj) + y'OjCjbd)} 
(a — b) -v/Odcjdj) — (c — d) vXabajbj) ’
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.