74
A THEOREM IN ELLIPTIC FUNCTIONS.
[728
In fact, writing herein a + 7 = 0, that is, 7 = — a, the right-hand side becomes = 0 ;
and the arcs on the left-hand side are a + /3, a — ¡3, — a + S, —a—S, which represent
any four arcs the sum of which is = 0.
Writing in the last-mentioned equation x, y, z, w for the sn’s of a, (3, 7, $
respectively,
also
P = X 2 — y 2 ,
Pj = z 2 — w 2 ,
Q = 1 — x 2 — y 2 + k 2 x 2 y 2 ,
Q 1 = 1 — z 2 — w 2 + k 2 z 2 w 2 ,
R = 1 — k 2 x 2 — k 2 y 2 + k 2 x 2 y 2 ,
Rj — 1 — k 2 z 2 — k 2 w 2 + k 2 z 2 w 2 ,
D = 1 — k 2 x 2 y 2 ,
D 1 = 1 — k 2 z 2 w 2 ,
the equation
is
j^PPi.QQi 1 RRi
DDj + DD, k 2 DD 1
k' 2 2k' 2 (x 2 — z 2 ) (y 2 — w 2 )
that is,
k 2 DD l
1 k' 2
- k' 2 PP x + QQ } - ^ RR, + ^PP 1 + 2 k' 2 (a; 2 - z 2 ) (y 2 - tv 2 ) = 0.
It is easy to verify that the terms of the orders 0, 1, 2, 8 and 4 in x 2 , y 2 , z 2 , w 2
separately destroy each other; for instance, for the terms of the order 2, we have
— k' 2 (x 2 — y 2 ) (z 2 — w 2 ) + {{x 2 + y 2 ) (z 2 -f w 2 ) + k 2 (x 2 y 2 + z 2 w 2 ))
— ^2 W + 2/ 2 ) + w ~) + h 2 (x 2 y 2 + z 2 w 2 )}
k' 2
+ -- {— k 2 (x 2 y 2 + z 2 w 2 )] + 2k' 2 (x 2 — z 2 ) (y 2 — w 2 ) = 0,
that is,
— k' 2 (x 2 — y 2 ) (z 2 — w 2 ) + (1 — k 2 ) (x 2 + y 2 ) (z 2 + w 2 )
+ (k 2 — 1 — k' 2 ) (x 2 y 2 + z 2 w 2 ) + 2k' 2 (x 2 — z 2 ) (y 2 — w 2 ) = 0 ;
or, omitting the factor k' 2 , this is
— (x 2 — y 2 ) (z 2 — w 2 ) + (x 2 + y 2 ) (z 2 + w 2 ) — 2 (x 2 y 2 -f z 2 w 2 ) + 2 (x 2 — z 2 ) (y 2 — w 2 ) = 0,
as it should be.
The theorem in its original form was obtained by me as follows: using the elliptic
coordinates p, q, r, such that
X 2 y 2 z 2
b 1 = 1
a+p b+p c+p ’
x 2 y 2 z 2
a + q b + q c + q
= 1,
X 2 y 2 z 2
1—y. 1_ _—_
a + r b + r c+r