Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 12)

855] 
419 
solution of (ci, b, c, d) = (a 2 , b\ c 2 , d 2 ). 
If p 2 —1=0, then either p = 1, giving q = 1, r = 1, and hence the equation is 
a? 4 +« 3 + « 2 + « + 1 = 0 ; or else jp = — 1, giving g = 0, r = — 1, and hence the equation is 
a? 4 — a? — x + 1 = 0, that is, (x — l) 2 (x 2 + x + 1) = 0. 
If p 2 + 2p — 8 = 0, then either p = 2, giving q = 3, r — 2, and hence the equation is 
x 4 + 2« 3 + 3a? 2 + 2a? + 1, that is, 
(a? 2 + « + 1) 2 = 0; 
or else p = — 4, giving ^ = 6, r = — 4, and hence the equation is x 4 — 4a? 3 + 6a? 2 — 4a? + 1 = 0, 
that is, (a? — 1) 4 =0. 
Secondly, if r= — l—p; here 
2q=p‘ 2 +p, 2 (—jJ 2 —p - 1) = q 2 — q ) 
the last equation multiplied by 4 gives 
8 (- p 2 —p — 1) = (p 2 + p) (p 2 + p — 2), 
that is, 
p 4 + 2p 3 + 7p 2 + 6p + 8 = 0, or (p 2 +p + 4) (p 2 + p + 2) = 0. 
If £> 2 + jp + 4 = 0, then p = {- 1 + i V(15)}, whence 
r = i{-l ±»V(15)}, 2q — p 2 +p, = — 4, or g = — 2 ; 
and the equation is 
{— 1 +i\/(15)} a? 3 — 2a? 2 + £ {— 1 + i\/(lo)} «+1=0. 
If p 2 +p + 2 = 0, then p = £ {— 1 ± i V(7)}; whence 
r = £ {-1 ± »V(7)}, 2q=p 2 +p, = - 2, or g = - 1; 
and the equation is 
a^ + H-l ± tVOOl^-^ + ii-l ±iV(7)}a? + l=0, 
that is, 
(a? — 1) [« 3 + {1 + i V(7)} a? 2 + £- {- 1 + i a/(7)} « — 1] = 0. 
We thus see that the eight equations are 
1 (a? — 1) 4 = 0, 
1 (a? 2 + x + l) 2 = 0, 
1 (a? — l) 2 (a? 2 + a? + 1) = 0, 
1 a? 4 + a? 3 + a? 2 + a?+l=0, 
2 («-1){« 3 + 1(1 ±^V7)a; 2 + ^(-l ±id1)x- 1} =0, 
2 + £ (- 1 ± » V15) a? 3 - 2« 2 + 1 (— 1 + iV15) a? + 1 = 0, 
8 
53—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.