Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 12)

560 
SYSTEM OF EQUATIONS FOE, THREE CIRCLES 
[873 
In verification, observe that we have 
G — H =2tt 
-2A, 
(7' 
-H' = 
- ir + A, 
h 
CM 
II 
1 
Çb 
-A, 
H 
-F' 
= A, 
H-F = 
- 2B, 
H' 
-F' = 
7r + B, 
H — G' = 
-B, 
F 
-G' 
= 5, 
F - G = 
-2(7, 
F' 
-G’ = 
— 7T + C, 
F -H'= 
-G, 
G 
-H' 
= 0; 
hence 
(cos G — cos H) 2 + (sin G — sin H) 2 = 2 — 2 cos (G — H), = 2(1 — cos2X), = 4 sin 2 J., 
and we thus see that the sides are = 2sinX, 2 sin B, 2 sin (7 respectively. 
The first circle should pass through the points (cos G, sin G), (cos H, sin H); we 
ought therefore to have, for the first of these points, 
that is, 
1 + 2 ^ cos (G - F) + Sm -^— 
" sm 2 a 
sm a 
sin 2 A 
sin 2 a ’ 
sin (A — a) 
1 + 2 h ' cos 
sin a 
A , sin 2 {A — a) 
sin 2 a 
sin 2 A _ 
sin 2 a 
and, for the second of the points, the same equation. Write for a moment 
v sin A , sin(X-a) 
A = — , then = = X cos a — cos A ; 
sin a 
sm a. 
then the equation is 
1 + 2 (X cos a — cos A) cos A + (X cos a — cos A) 2 = X 2 , 
that is, 
1 — cos 2 A = X 2 sin 2 a, 
which is right. 
The second and third circles should intersect at the angle A', that is, we ought to 
have 
S ^~ cos ff ' - 8jn & ) - Bin <?' - sin H 
sin ¡3 
sm y 
sin 2 B sin 2 G sin B sin G ., 
+ I73U- + 2 „ ■ COS A , 
sm y 
sin 2 /3 sin 2 7 ^ sin A sin 7 
or, reducing and for cos (G'— H') substituting its value, =-cosX, the equation is 
si n»CB-£) sitf(g-Y) sin (j? (3) sin (C—y) _ sin» B sin» O „sin B sin C 
sin» ft sm» 7 sin ¡3 sin y sin» /3 + sin» 7 + 2 sin/9 sin 7 008 A ’ 
Writing here 
sin B _ sin G 
• /"A -* ) m 
sm /3 sm 7 
the equation is 
( F cos /3 — cos B) 2 + (Z cos 7 — cos (7) 2 + 2 ( F cos /8 — cos i?) (Z cos 7 — cos G) cos 
= F 2 + X 2 + 2YZ cos A',
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.