560
SYSTEM OF EQUATIONS FOE, THREE CIRCLES
[873
In verification, observe that we have
G — H =2tt
-2A,
(7'
-H' =
- ir + A,
h
CM
II
1
Çb
-A,
H
-F'
= A,
H-F =
- 2B,
H'
-F' =
7r + B,
H — G' =
-B,
F
-G'
= 5,
F - G =
-2(7,
F'
-G’ =
— 7T + C,
F -H'=
-G,
G
-H'
= 0;
hence
(cos G — cos H) 2 + (sin G — sin H) 2 = 2 — 2 cos (G — H), = 2(1 — cos2X), = 4 sin 2 J.,
and we thus see that the sides are = 2sinX, 2 sin B, 2 sin (7 respectively.
The first circle should pass through the points (cos G, sin G), (cos H, sin H); we
ought therefore to have, for the first of these points,
that is,
1 + 2 ^ cos (G - F) + Sm -^—
" sm 2 a
sm a
sin 2 A
sin 2 a ’
sin (A — a)
1 + 2 h ' cos
sin a
A , sin 2 {A — a)
sin 2 a
sin 2 A _
sin 2 a
and, for the second of the points, the same equation. Write for a moment
v sin A , sin(X-a)
A = — , then = = X cos a — cos A ;
sin a
sm a.
then the equation is
1 + 2 (X cos a — cos A) cos A + (X cos a — cos A) 2 = X 2 ,
that is,
1 — cos 2 A = X 2 sin 2 a,
which is right.
The second and third circles should intersect at the angle A', that is, we ought to
have
S ^~ cos ff ' - 8jn & ) - Bin <?' - sin H
sin ¡3
sm y
sin 2 B sin 2 G sin B sin G .,
+ I73U- + 2 „ ■ COS A ,
sm y
sin 2 /3 sin 2 7 ^ sin A sin 7
or, reducing and for cos (G'— H') substituting its value, =-cosX, the equation is
si n»CB-£) sitf(g-Y) sin (j? (3) sin (C—y) _ sin» B sin» O „sin B sin C
sin» ft sm» 7 sin ¡3 sin y sin» /3 + sin» 7 + 2 sin/9 sin 7 008 A ’
Writing here
sin B _ sin G
• /"A -* ) m
sm /3 sm 7
the equation is
( F cos /3 — cos B) 2 + (Z cos 7 — cos (7) 2 + 2 ( F cos /8 — cos i?) (Z cos 7 — cos G) cos
= F 2 + X 2 + 2YZ cos A',